NASA TECHNICAL NOTE Sz N/ | D-2642

iy

NASA TN D-2642

THE STATIONARY LAMINAR VELOCITY
BOUNDARY LAYER WITH CONSTANT FLUID
PROPERTIES AND ARBITRARY DISTRIBUTIONS
OF PRESSURE AND MASS TRANSFER

by Evnst W. Adams and Benton K. Berry

George C. Marshall Space Flz’gbt Center
Hunisville, Ala.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION o WASHINGTON, D. C. < FEBRUARY 1965



NASA TN D-2642
TECH LIBRARY KAFB, NM

L

0154785

THE STATIONARY LAMINAR VELOCITY BOUNDARY LAYER WITH
CONSTANT FLUID PROPERTIES AND ARBITRARY DISTRIBUTIONS
OF PRESSURE AND MASS TRANSFER
By Ernst W. Adams and Benton K. Berry

George C. Marshall Space Flight Center
Huntsville, Ala.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For s-ulo by the Office of Technicai Services, Department of Commerce,
Washington, D.C. 20230 -- Price $3.00






Page
I. INTRODUCTION. ..evvuvenenn. A e 1
II.  DEFINITIONS AND GENERAL PROPERTIES OF THE BOUNDARY LAYER FLOW

UNDER DISCUSSION. ..eueuvnrnursanasensnsnsncosananannns -
III.  DIFFERENTIAL EQUATIONS, BOUNDARY CONDITIONS, AND INITTAL

CONDITIONS........ e eeeneniea e e . 6
IV.  THE INNER SOLUTION. .. .u.ueuusvononanracncoarenonensnenns Cereaenan, .9
v. THE OUTER SOLUTTION. . ..eueuveesonencncnsonenanasanananns B 1
VI.  THE MATCHING PROCEDURE OF THE INNER AND THE OUTER SOLUTION........ 17
VII, THE NUMERICAL SOLUTION PROCEDURE........... e, R £
VIII. ERROR ANALYSIS............. e e, ¥
IX,  APPLICATION OF THE METHOD TO THE CIRCULAR CYLINDER............ cee. 23
X. APPLICATION OF THE METHOD TO GENERAL CYLINDERS................ eee. 25
XI.,  APPLICATION OF THE METHOD TO BOUNDARY LAYER FLOWS WITH MASS

TRANSFER. + e vvvvnennnnensnen. e e e 26
XII.  COMPARISON WITH KARMAN-POHLHAUSEN INTEGRAL METHODS............ .. 28
XIIT, GENERALIZATIONS OF THE METHOD. ... eueuseuonsneneosoransnsnsncnsnnns 29
XIV.  CONCLUSIONS......... i, i, 32
APPENDIX A: VALIDITY OF BLASIUS' EXPANSION....... e 57
APPENDIX B: HISTORICAL NOTES ON THE INNER AND THE OUTER SOLUTIONS..... .. 59
APPENDIX C: SOLUTIONS OF THE LINEARIZED VON MISES EQUATION...... e 63
APPENDIX D: BOUNDS OF THE RIGOROUS SOLUTTION......e.vovonnne. e e 69

TABLE OF CONTENTS

iii



Figure

10

11

12

13

14

LIST OF ILLUSTRATIONS
Title
Flow Plane and Notations......... ceereenecns Ceeeesevosssseccen

u(x, y)/us(x) at x = 0.1 (p = 11.5°) for the Circular
Cylinder..i.ceeveeeenencannns teeseessocsarentnane cecscsseensens

u(x, y)/ug(x) at x = 0,5 (p = 57.2°) for the Circular

Cylinder.ccieeeesessasasesecaccncssnesoccsosssssacsssssssssasescs

u(x, y)/ug(x) at x = 0.85 (¢ = 97.4°) for the Circular

Cylinder..eeeeesesescocsocoeocssosonssacsosecassaanssasssssssnnns

u(x, y)/ue(x) at x = 0.5 (¢ = 57.2°) for the Circular

CYlinder.cieseseeaseseesosnsecsesssososcsossnesosonsscsscascnnesos

]

u(x, y)/ue(x) at x = 0,85 (p = 97.4°) for the Circular

CYlinder..ieeeosescoasnssesassossssecsssesossassosasesnoaasanss

u(x, y)/ue(x) at x = 0,1 (p = 11.5°) for the Circular
CylindeTr.cieeeseesaoaseanossssosssacasssosasessesnosscsccsocs caee

u(x, y)/ue(x) at x = 0,5 (p = 57.2°) for the Circular

Cylinder.oseesseessesescsesseosscassaascsasasosssonasonssocsnos

u(x, y)/ue(x) at x = 0.85 (p = 97.4°) for the Circular

Cylinder...oseceeeececesceaesosastsasesscassoossosconsacsnoansse

ce(x) ReIé for the Circular Cylinder, from Blasius' Expansion
(28) and from the Approximation (34)...ccceecieienirerarcnsnns

Cf(x)bf(0.0S) for the Circular Cylinder, from Blasius'
Expansion (28) and from the Approximation G4y.eeen... ceeeenees

j
cf(x) Re/2 for the Circular Cylinder, from Blasius' Expansion
and From (16)..eeeeeececssssssscsessassnocacssoaassansssonnnnns

i
cg(x) Re/2 for the Circular Cylinder, from Blasius' Expansion
and from (22) with Continuation by Use of (16)....ccceevvunnns

J
cg(x) Re/2 for the Elliptic Cylinder, from (16) and from (22)..

iv

40

41

42

43

b

45

46

47

48

49

50



Figure
15

16

17

18

Table

LIST OF ILLUSTRATIONS (Continued)

Title Page

cg(x) Re’. for the Circular Cylinder, from (16): Normal
Blowing and Suction VeCtoOrS...eeeeeeeeeeesoeocsccsocessscosses 52

ce(x) Re”2 for the Circular Cylinder, from (16): 1Inclined
Bfowing and Suction VeCLOrS....eesecescsccsascsecesnoscsecenaes I3

cg(x) Re’ for the Circular Cylinder, from (16): Influence
of the Inclination of the Blowing VecCtor...eveeeeeoessceceness Db

cf(x) Re’ for the Elliptic Cylinder, from (16): Normal
SUCEION VeCtOr..iieeieeeeasocessnnssssssoanscsassesncssncanaas D5

LIST OF TABLES

Title Page

Numerical Values of the Individual Terms in Partial Sums of
(16) and (22) for the Circular Cylinder (Figure 13)......... 34

Separation Point xg of the Boundary Layer at the Circular
Cylinder...eeeeesesenecaccsasanssess cecesesessasssaceseannns 35

Coefficients in the Polynomial Expressions (40) and (41)
Pertaining to the Ellipse l:l4....cereeeeccvoncnoncanssannes 36

Numerical Values of the Individual Terms in a Partial Sum
of (16) for the Elliptic Cylinder (Figure 14)......cccenvees 37

Auxiliary Functions for Mass Transfer at the Circular
CYlinder .veeececcevesessassassesenssassossssssnscosssssnsasnsss 37



DEFINITION OF SYMBOLS

Symbol Defipition
A, coefficient in expansion (16)
an coefficient in expansion (22)
Bn coefficient in expansion (50)
cf = Z%W/bﬁi wall friction coefficient
cp specific heat at constant pressure
F auxiliary functions
G = g(4g, wg? boundary function defined in (31)
g = p(2) + udd, V) total pressure
H, H, H , H, H__,
° oo’ 1 i regions defined in Section IT and Figure 1
Tr1o
HM’ HP regions defined in Appendix D
L reference length
M, N auxiliary functions in Section XI
P static pressure
Pr Prandtl number
Pp operator defined in (5)
Py operator defined in (D-7)
R radius of circular cylinder
Re = Lu /v Reynolds number

vi



Symbol
T
u

u,, = const,

DEFINITION OF SYMBOLS (Continued)

IIco

Definition
temperature
velocity component parallel to the wall
free stream velocity
velocity component normal to the wall
arc length of the wall
boundary of the stagnation point vicinity
first maximum of ue(x) past the stagnation point
point of separation of the boundary layer

coordinate normal to the wall
boundaries of regions defined in Section TI
boundaries of regions defined in Appendix D

angle measuring on circumference, ¢ = 0 at
stagnation point

potential of velocity at the outer edge of the
boundary layer
see Figure 1

stream function

stream line

vii



DEFINITION OF SYMBOLS (Continued)

Symbol Definition

v (%) boundary of Hy and Hyy, consisting of lines
7= fyand ¥ = ¥y

U viscosity and transform for ¢, equation (C-3)

v=yulp kinematic viscosity

o density

T shear stress

m dummy variable for g

SUPERSCRIPTS

indicates that the parameter possesses a
physical dimension, e.g., p; absence of bar
denotes dimensionless parameters, e.g., p

%* refers to the line *(x) separating Hp and Hi,
SUBSCRIPTS

b boundary value

e outer edge of the boundary layer, y = «

i, j, n summation index

L lower bound

U upper bound

' wall

viii



THE STATIONARY LAMINAR VELOCITY BOUNDARY LAYER WITH CONSTANT FLUID
PROPERTIES AND ARBITRARY DISTRIBUTIONS OF PRESSURE AND MASS TRANSFER

SUMMARY

Along sections of stream lines { = w&(x, v), series expansions represent-
ing an inner solution (0 < y = y*) are matched with a closed-form outer solu-
tion (y* = y < ), whose linearization error vanishes asymptotically as y — o,
This process yields a nonlinear integro-differential equation for the friction
coefficient cf(x) Re”. The velocity distributions U (x) at y = o and uy(x)
and vy(x) at y = 0 may be represented sectionally by polynomials. Comparison
with other solutions shows that accurate approximations of cg(x) Re’2 can be
computed This accuracy decreases with the number of points where u (x), ugu(x),
and V (x) change their signs. Results presented show the influence of the
dlrectlon of the mass transfer vector relative to the wall. Generalizations
of the method are outlined with respect to compressible boundary layer flow
and a special second~-order boundary layer theory. Rigorously wvalid bounds for
cf(x) Re’2 can be calculated by use of this method and the theorem of Nagumo and
Westphal.

I. INTRODUCTION

Even though Prandtl derived the boundary layer equations from the com-
plete Navier-Stokes equations as early as 1904 [44], only a relatively small

number of exact solutions have been published since that time, Separation of
the variables yields the most important class of rigorous solutions, the
so-called similar solutions for ug(x) = ¢ xT or ue(x) = eBX, where o, B, c,

and m are constant numbers (see References 3, 9, 10, and Ch VIII of Refer-
ence 48).

Under the assumption of analytical functions representing the velocity
distributions ug(x), uy(x), and v,(x) at the boundaries y = 0 and y = «,
respectively, Blasius [6, 1908] presented a series expansion for u(x, y) in
powers of x, whose coefficients are determined by ordinary differential equa-
tions. This expansion proceeds in odd powers of x in case of profiles whose
symmetry axis is aligned with the free stream. For this case, Howarth [22, 24]
and later Tifford [59] calculated "universal' functions of y which are not
related to a particular body shape and represent the coefficients of the
powers x, x°, ..., x*% in Blasius' expansion (see Ch. IX of Reference 48),

It is shown in Appendix A that a partial sum employing the available universal
coefficients yields accurate approximations to rigorous solutions for profiles
with considerable bluntness only. Even for a circular cylinder, the error



is negligible only in the region where ugi(x) > 0. For functions ug(x) which

can be expanded in powers of xmlz withm # - 1, Gortler [18] has presented a

series expansion in powers of £’ for the solution of Prandtl's boundary layer
problem, where

X

£ = f o, (%) dx/9v.

[o]

Tables of universal functions have been published for the coefficients of this
expansion [19]., Since the convergence is still an open issue, both Blasius'
and Gortler's series could be called "formally exact."

A very large number of approximate solutions and solution methods of
Prandtl's boundary layer problem has been published since 1904; convergence
towards rigorous solutions has been shown only for certain types of explicit
difference methods as applied to convex initial profiles and u'(x) >0
[29, 72]. References 16, 55, and 71 present explicit difference methods., A
comparison of explicit and implicit difference schemes is given in Reference
53. 1If the convergence problem is unresolved and error estimates are not
available, the practical value of approximate solution methods can be tested
by consideration of computation work and accuracy obtainable in those special
cases for which rigorous solutions are available.

In 1921, von Kdrmin [26] and K. Pohlhausen [43] initiated the development
of integral methods, e.g., Ch. XII of Reference 48. With the exception of
cases where high accuracy is required as in stability analysis, integral
methods are still more important than any other approximate procedure in
engineering boundary layer work. Prandtl's momentum differential equation of
the boundary layer is multiplied consecutively by u®, u, u2®, u3, ..., u and
then integrated over y in each case fromy = 0 to y = d(x), where d(x) is the

"boundary layer thickness.'" Substitution of a polynomial

N
u = y by (x) (y/5(x))"

n=1

with N > M in these M relations yields a system of M simultaneous nonlinear
ordinary differential equations for M + 1 unknown "form-parameters" A;(x)
which depend on ug(x), &5(x), etc., and determine the friction coefficient
cg(x) Re’., By use of boundary conditions at y = 0 and y = 5(x), the coef-
ficients bp(x) are expressed in terms of the form parameters. One-parameter
integral methods in gemeral furnish fairly accurate results at relatively
little computation work, provided ue, uy, and v, are sufficiently smooth



functions of x. Mangler [33], Wieghardt [70], and in particular Walz [65,
66, 67, 12] have developed and applied two-parameter integral methods which
in general give surprisingly accurate results. Kwan-tsu-Yang [30,31] has
presented an iteratively corrected integral method. The convergence of inte-
gral methods of any type towards rigorous solutions is still an open issue,

"Locally similar solutions' have been proposed (e.g., References 34 and
50) which determine u(x, y) from tables of similar solutions. To obtain the
momentum thickness 6(xp) of the boundary layer at the grid point x = xp, ug(x)
is approximated by k(x - xo)m between the grid points xp and xp-;. The three
free constants, k, xp, and m are determined by requiring that ug(Xp.3), Ue(Xp),
and 6(xp. ) are matched. Smith [50] points out that the accuracy appears to
be very high in regions of decreasing pressure; however, separation is pre-
dicted somewhat early. This is readily explained by the fact that the upstream
history of the boundary layer for x < xXp.; is neglected altogether,as is also
true in integral methods. The influence of this deficiency usually manifests
itself strongly in a region of increasing pressure. To avoid this disadvantage,
"difference-differential' methods have been presented [20, 51, 52, 57] which
substitute difference expressions for the x-derivatives in the nondimensional
boundary layer equation for the stream function y(x, y). Accuracy thus is
gained at the expense of computation work since tables of similar solutions
cannot be used here. At every grid station x = xp, a nonlinear ordinary dif-
ferential equation with boundary conditions at y = 0 and at y = « has to be
solved iteratively. This method involves about as much computation work at
any grid station as implicit difference schemes,

The approximation of local features in the boundary layer is greatly
facilitated by the two independent variables, x and y, available in difference
and difference-differential methods. Both the inner and the outer solution
proposed in this paper also depend on x and y (or transformed variables); com=~
putation work is saved, however, as compared to difference and difference-
differential methods since matching of the inner and the outer solution yields
one integro-differential equation for the friction coefficient in dependence
on x only. This relation accounts explicitly for the entire upstream history
of the boundary layer. The inner solution employed here is represented by a
series expansion in powers of y or ¥ - iy, whereas both Blasius' and Gortler's
series expansions proceed in powers of x., The closed-form outer solution fol-
lows from a linearized momentum equation whose linearization error vanishes
asymptotically as y — «. This linearized relation can be transformed into
the differential equation for one-dimensional transient heat conduction. Com-
parison with other solutions of Prandtl's boundary layer problem shows that
accurate approximations of cg(x) Re’s can be obtained from numerical solutions
of the integro-differential equation mentioned above. As is true for
other approximate methods in boundary layer theory, the accuracy, of the
method proposed here decreases with the number of points where u x),
uw(x), and vw(x) change their signs. This restriction of the appllcablllty
refers to a wavy wall and to the concentration of mass transfer in slots,
respectively. The method proposed here surpasses the capabilities of



Blasius' and Gortler's series expansions insofar as ug(x), uy(x), and vy (x)
may be represented sectionally by polynomials, Results presented show the
influence of the direction of the mass transfer vector relative to the wall.
Generalizations of the method are outlined with respect to compressible
boundary layer flow and a special second-order boundary layer theory. 1In
particular, in these cases, the savings of computation work as compared to
difference and difference-differential methods become obvious.

In view of the small number of exact solutions and solution methods which
have become available so far, Prandtl's boundary layer problem was in rather
unsatisfactory state from a rigorous point of view until Nickel [37, 38, 40,
41} in response to a remark by Gortler [17] published rigorously valid theo-
rems on all the relevant general features of the velocity distribution u(x, y)
in the incompressible stationary boundary layer flow under discussion, Nickel
obtained these theorems by a suitable modification of the lemma of Nagumo [36]
and Westphal [68] as applied to Prandtl's momentum equation in von Mises or
Crocco variables. Velte [62, 63, 64] later rederived the majority of Nickel's
theorems by application of Nirenberg's maximum principle [42] to Prandtl's
momentum equation, Recently, Nickel [39] employed his modified version of
Nagumo's and Westphal's lemma to determine a rigorously valid lower bound of
the friction coefficient by use of locally similar solutions., - Since these
solutions do not represent the upstream history of the boundary layer ade-
quately, rather conservative lower bounds are obtained in Nickel's paper.
According to the brief outline in Appendix D, rigorously valid bounds of exact
boundary layer solutions can be determined by application of the method derived
in this paper and Nickel's modified version of Nagumo's and Westphal's lemma.
Details of this procedure will be presented in a forthcoming paper by the
first author. In view of the preceding discussions on available solutions
and solution methods for Prandtl's boundary layer problem, it would be quite
valuable to be able to compute rigorous and, at the same time, close upper and
lower bounds of the exact friction coefficient.

IT1, DEFINITIONS AND GENERAL PROPERTIES OF THE
BOUNDARY LAYER FLOW UNDER DISCUSSION

The solution of Prandtl's boundary layer problem under discussion is to
be determined in the region H of the Cartesian x-y plane (Figure 1). To
facilitate the discussions, subregions H,, etc., are introduced according to
Figure 1,

H : 0<x< Xy ' 0 <y < o,

H, 0 < x < Xgq, 0 <y < o,

Hoy @ 0 < x < Xo, Vo <Y < e, (12)
Hp @ x5 < x < Xg, 0 < ¥ < ¥ (x)

Hip @ %o < X < Xg, PEX) < <o

Hyp,t %o < % < Xor1, Yoy < U < oo



The integer number ¢ takes the values 0, 1, ..., B, where xp = Xg; in
Figure 1, B = 3. The boundary line y*(x, y*) separating Hy and Hyp con-
sists of stream line sections and sections x = const.,

% = * < <
¥ o= Wa’ X, <x < X 1 and x X Wa =¥ s Vo (1b)

The parabolic boundaries of the regions listed in (la) are represented by the
following lines:

(

' (@) x=0, 0 <y < (b) y =0, = x < Xg,
() y =0, 0 =x < xg;
ry: (a) x=0, 0 <y < w; (b) vy = 0, £ x < Xg,
() y =00, 0 =x <xg;3
ro L2 X=O,\lfg<ll)‘<°0; gb2¢=¢§,0<x<xo,
< ) ¥ =0, 0 =x <x4; (1c)
rp o (a) x = %o, Wy, < ¥ < V5 () ¥y =0, X5 = x < xXg,
() ¥ = ¥*(x), x5 = x < Xg3
Fppt £2) x = x5, ¥§ <y <o M) ¥ = v (x), x5 = x < xg,
(€) ¥ = o, X5 = X < Xg3}
kI‘Ilaz a) X = Xg, wz < < oo () ¥ = wg, Xg £ X < X1
() ¥ = o, x5 =X < Xopq

In H,, the rigorous stagnation point solution of both the Navier-Stokes
equations and Prandtl's boundary layer equations is employed. This solution
(e.g., Ch. V of Reference 48) yields u(xg, y) >0 for 0 <y < » and
du(xg, ¥)/dy >0 for 0 £y < o, By definition, u(x, y) > 0 in H, The separa-
tion point x = xXg is determined by the condition that u(xg, y) = O at least
at one point (xg, y) of the line x = xg, 0 <y < o». The theorem

(D) "Su(x, y)/dy takes its maximum and its minimum values on [
has been derived by Nickel [37] under the assumption u.(x) =0
and by Velte [62, 64] under the assumption uyw(£) # ue(£) at any
point x = £ in 0 < x < xg. Under the assumptions u,(x) = vy(x) =0,
Nickel [37] has derived theorem II.



(IT) TIf ug(x) changes its sign j times in xj, < x = £, the velocity
component u(g, y) possesses at most j points of inflection on
the line x = ¢, 0 <y < =,

Theorems (I) and (II) are valid if certain conditions on differentiability
and continuity of u(x, y) are satisfied. Theorem (II) as it is presented
here is correct under the condition of the boundary layer beginning at a
stagnation point. The following theorems can be derived immediately from

(I) and (II):

(Ia) 1If ou(x, 0)/d0y >0 for x, = x < Xg, u(x, y) must increase
monotonically as a function of y in sections x = const.,

i.e., u(é, y) <ug(€) on lines x = ¢, 0 =y < o,

(Ib) Because of theorem (Ia) and the definition of xg given
above, QJu(xg, 0)/dy = 0 at the separation point.

ITa Since the boundary layer supposedly begins at a stagnation
point, a point of inflection of u(x, y) in sections

x = const., does not exist in 0 = X £ x, 0 <y < », where
ug(x) >0 for 0 = x = x.

ITI, DIFFERENTIAL EQUATIONS, BOUNDARY CONDITIONS, AND INITIAL CONDITIONS

Nondimensional quantities are introduced as follows:

b
I
X
<
i
<
2
d
o
[=1
I
Cqm
<
I
2
P
0]
o
I
@1@|
o

(2)

Bars refer to values with physical dimensions. For simplicity, the static
pressure P, of the uniform flow at sufficiently large distance ahead of the
obstacle under consideratlon is supposed to be zero. According to Bernoulli's
theorem, therefore, = (p/2)082 and p(x, y) + ud(x, y) = 1. The stream func-
tion, whlch is deflneg by

u = %% and v = - %%, (3)

satisfies the continuity equation identically,



ou oV _
5% + Sy 0.

Prandtl's momentum equation of the boundary layer,

du 0 1 02y
= == + 2 o - =
PPu u 3 v S u, ug 352 0,

Ch. VII of Reference 48, is written in terms of the operator Pp.
coordinates of the boundary layer

X

,@(X) = f ue(x) dx, \l)’(X, Y) = f U.(X, Y) dy, and \lfw(x)

(o] (o]

are introduced by the von Mises transformation,

), @), @), = @) G

4

)

Streamline

X

J

v, (x) dx.

(6)

e

e.g., Reference 15 or Reference 24, where (9/dx), denotes the derivative with

respect to x when y is constant, etc. The streaim function y(x, y) is constant
along stream lines and the velocity potential @(x) is a transform of the geo-

metric arc length x of the wall. The Jakobian of the transformation (7) is

given by

3
SEB v @ ui .

(8)

The transformations (6) and (7) are uniquely reversible in H according to
theorem (Ia) in Section II. Because vZ << uZ and p(d, V) = pe(®) =1 - ug(QD

in boundary layer flow, the total pressure g = §/p, is defined as

g(d, ¥v) = p(@ + v, V) =1+ u3(@, V) - vi@D.

(9)



This expression takes negative values at the wall if uZ - u® > 1, as is true
in general in the vicinity of a maximum of ue(QO. Von Mises' coordinates (6)
satisfy the continuity equation (4) identically and transform Prandtl's momen-
tum equation (5) as follows:

%ﬁ - u %Eg (10a)
or
2
e

Prandtl's boundary layer equations (4) and (5) or von Mises' boundary layer
equations (10) are to be solved by use of the following initial and boundary
conditions prescribed on the parabolic boundary I

u(xo: y) = F(xo; V), (11a)
or
u(@ys ¥) = F(Zo, . (11b)
u(x, 0) = uW(X) = 0, (12a)
or
u(d, V) = 0. (12b)
v(x, 0) = vy(x), (13a)
or
Va1l Y, (B (). (13b)
lim  u(x, y) = u (%), (14a)
y >
or
lim u(g, ¥) = u (D. (14b)
¥ oo



The functions F(Xq, ¥), Uyp(x), vy(x), ue(X), F(@y, ¥, U, (#), and u () are
supposed to be given boundary functions which satisfy certain conditions on
differentiability and continuity. Owing to the continuity of the flow pro-
blem, the relations

F(xy, ¥) = w,(x)
and

lim  F(xg, ¥) = ug(x)
Yy - o

hold true, with corresponding relations valid in @-i coordinates. Rheinboldt
[47] has shown that (l4a) is automatically satisfied by u(x, y) provided u is
analytic with respect to x; also F(X,, y) is assumed to be analytic in y and
to possess a suitable asymptotic expansion as y — «. The boundary layer is
assumed to begin at a stagnation point, i.e., u(0, y) = 0. Because of (9)
and (14b), therefore,

g0, ¥v) = 1lim g(¥, ¥) = 1. (15)

¥ e

IV, THE INNER SOLUTION

Within a certain vicinity of the wall, the solution of equations (4) and
(5) is expanded as follows:

0

O n
u = ‘ An(x) ET (16a)
n=0
and
Y o
— 1]
v = - /. An_l(x) o - (16b)
n=0



Because of the boundary conditions (12a) and (13a), the coefficients Ao(x) and
A_,(x) are known,

Ap(x) = uy(x) and Al; (x) = - v (x), 17>

where An (x) =+ mw(x) appears only in (16b). The relations (2) yield

1 y
A(x) = E-cf(x) Re” (18)
where
o = 2 _Ja
£opw Moy

Substitution of (16) in (5) gives
As(x) = Ay (%) Ag(x) - AL (x) Aj(x) - ug(x) ué(x) (19)

and, if n > 0,

AL A A G AL A )
nt il (m - i)t - 1! (m - ' (20)
i=0

The coefficients A;(x), i = 2, depend on the given velocity distributions
(12a), (13a), and %14a) at the boundaries and on the friction coefficient
cg(x). For uy(x) = vy(x) =0, equations (20) have been rearranged to repre-
sent the coefficients Aj(x), 2 = i = 11, as functions of f(x) = - ug(x) uf (x)
and A (x),

10



[ A2G0) = £(x),

Az(x) = 0,

Ag(x) = A;(x) AY(X),

As(x) = 2A, (%) £' (x),

Ag(x) = 2f(x) £'(x),

Ap(x) = 4A5(x) AUMK) - Ay(x) AY (),

Ag(x) = 10A%(x) f"(x) - 13A,(x) AY(x) £'(x) + 9f(x) [Al(x) A (x) + A&z(x)],

Ao(x) = 40A;(x) £(x) £"(x) -~ 16A,(x) £'°(x),

Aro(x) = - 24A%3(x) AYL(x) A'Y(x) + 27A1(x) ALZ(x) + 28A3(x) AY' (x)
- 16£(x) £'7(x) + 40£2(x) £"(x),

Aga(x) = 135£A, AL AY + 451A; ALTE' - 130A% ALE" - 224f' AZ AY
- 270 £ A'l3 + 180f AZ AY' + 80A3 ™,

Ayo(x) = - 510A2 £' £ - 615A, Ay ££" + 710AZ ££" - 1739A, AY £'°
- 899F£' AYT - 899Ff' A, AU + 945£2 Ay A + 315£2 A, AT,

(21)

The expressions (21) for Ap(x), 3 s m = 9, are listed in Ch, VIII of Refer-
ence 48,

Under the assumption uy(x) = 0, the solution of equations (10a) or (10b)
is expanded as follows within a certain vicinity of the wall:

n+1

o) .

2
u(x, §) = z a () [w - \UW(X)J : (22)
=0

11



where @(x) may be substituted for x by use of (6). The expansion (22) satis-
fies the boundary condition (13b). The relations (2) yield

a2 (P(x)) = cg(@(x)) Re’, (23)

Substitution of (22) in (1l0a) gives

- 2u (x) u'(x) dy (x)
2
a(x) = 3-[ ag(x) - —x ] , (24)
_ 723G 32 W™
as(x) = - §'ao(x) - Z'ao(x) dx (25)
and, if n = 3,
n-1
an(x) = = EE%TET j{l ai(x) an_i(x)
i=1
n-2 i

2 i+ 2\ i

“h@ + 2) a2 {Z p-i-2 ) T2 E(Z 23 ) ai—l(x)>
i=0 =0
n-3
—:{: <%3(x) an-j-3(x) + aj(x) a;_z_j(x)>
=0
. -1

dy_(x) X

REE S ' Z a; G an_j_l(X):l , (26)
i=1

12



The coefficients aj(x), i =z 1, depend on the given boundary functions Y (XD
I
and uy,(x) and on the friction coefficient cg(x) Re’., Because of

a2(0) = ag(xg) = 0,

the coefficients aj(x), i =z 1, do not exist both at the stagnation point,
x = 0, and at the point of separation of the laminar boundary layer,

XS'

The problem of the convergence and thus existence of the infinite series
(16) and (22) is too involved to be treated here. Since partial sums of the
expansions (16) and (22) will be used subsequently, the convergence and
existence problem is superseded by the question of the accuracy of these
polynomial representations.

This accuracy question will be discussed now employing the example of
the impermeable circular cylinder (uy = vy, = 0) with ue = 2 sin ¢ = 2 sin 2x
as given by potential flow theory, Ch. IX of Reference 48, 1In order to have
unified treatment of arbitrary cylindrical profiles, the diameter 2R of the
circular cylinder represents the reference length L. The velocity profiles
marked '"B" at stations x = const. in Figures 2-9 are results of evaluating
the six available terms (n = 1, ..., 6) in Blasius' series expansion

f

(27)

TR B

E:( 1™ ?Efgj—fyj ) <}—%> - 2£5(n)

see Appendix A. According to Ch. IX of Reference 48, the available terms in

(27) yield
-3 - > o7
- 2.732 <4 + 0.292 <L> - 1.83 x 1072 <%>
R R R

-2 N S
+ 0.43 x 10-% <}%§{> - 1.15 x 10-% (}%%{) }. (28)

Since it is intended to study in sections x = const. the approximation of the
supposedly exact (u/ug)-profiles as following from (27) while u,(x) and cf(x)
are given, (28) has been used to evaluate partial sums of (16) (Figures 2-6)
and (22) (Figures 7-9) with the number N of terms marked at the curves in

cg(x) VRe' =27 [6.973

2l
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Figures 2-9., The general expressions (20) and (26) for the coefficients have
been used to calculate the partial sums of u/u. shown in Figures 2-4 and 7-9,
respectively. The derivatives of A; and aj have been obtained from first
backward difference quotients, e.g., Aj(x) = dA;(x)/dx = [A;(x) - A § (x=1%) ]/ 1>,
The number of decimals of the coeff1c1ents in expre551on (28) for 2Al(x) =
(x) indicates a rapid decrease of accuracy in approximating the derivatives
of Aj or aj as i increases. The partial sums of u/u. shown in Figures 5 and
6 have been determined by use of the special formulas (21) for the coef-
ficients A,. Here the derivatives of A, have been computed more reliably
from the unsymmetric finite expressions (37) in Section VII with h = 0,02,

Figures 2 and 7 show that about seven terms suffice at x = 0.1, i.e.,
¢ = 11.5°, to approximate Blasius' (u/ug)-profile from zero up to u/ug = 0.95.
At x = 0.5, i.e., @ = 57.2°, ten terms are sufficient for this approximation
as seen in Figures 3, 5, and 8. Even though the (u/ue)-profiles following
from (16) or (22) have been calculated by use of Blasius' expression (28)
for 2A,(x) = ai(x), Blasius' curve "B" in Figure 6 deviates at y as low as
one from the nearly coincident curves representing partial sums with 7, 9,
10, and 11 terms. Since Figure 6 refers to x = 0.85, i.e., ¢ = 97.4°, close
to the separation point, this deviation is explained by the shortcomings of
Blasius' expansion in the region where ul(x) < O.

Even at x = 0.5, the higher-order terms must still have such small con-
tribution to the numerical values of the partial sums of (16) and (22) that
it does not make any noticeable difference whether the more accurate coef-
ficients A, are used in Figure 5 or the less reliable coefficients Ay and ap
in Figures 3 and 8, respectively. At x = 0.85, however, the more reliable
coefficients yield a more regular pattern of curves, Figure 6, as compared
to Figures 4 and 9. Computed results not presented here show that the way

of determining the coefficients just begins to manifest itself at x = 0.8.

V., THE OUTER SOLUTION

The asymptotic approach u - up 88 y — « can be studied to a first
approximation if u/ue in (10b) is replaced by ome. The resulting relation

has the form of the differential equation

2
%-13=Ag—y§ (30)

14



for the one-dimensional transient distribution of temperature T(y, t) in a slab
possessing thermal diffusivity A =1, e.g., Ch., II of Reference 7, Because of
its asymptotic validity, the differential equation (29) will be considered in
the followingdonly for the regions Hgy, Hyygy, and their common boundary line

Do = F(%g)s V5 < ¥ < w; see (la), (lc), and Figure 1. Here 1 = Z(xpy1) is

a given constant number and { = W& represents any stream line in H. According
to (15), the initial and the boundary conditions for the solution of (29) in
Hoq + Hyyg are given as follows:

80, ¥) =1, g(d, ¥) = G, and lim g(@ ¥ = 1; (1)

¥ o

here G(¥) is supposed to be a given function of @. Evidently, G(Z) =1
because of (9) and theorem (Ia) in Section II,

Thé solution of equations (29) and (31) for the regions Hyy + Hypy is
derived in Appendix C,

=/®/ ”_ _ RN _ —’
og(d, W _ _ 2 ] de(y) =P | -y e w dq in H__+ H
o

o N A dn B— |

II0]
(32)

This relation expresses the solution dg(Z, ¥)/Jy = 20u(@, V¥)/Jy of equations
(29) and (31) in Hpy + Hyyy as a function of the boundary parameter dG({@)/dd.

As | — =, the right-hand side of (32) is determined by the values of G' (2 as

g — 0. This conclusion is closely related to Rheinboldt's theorem [47] quoted
at the end of Section III. This theorem may be interpreted as follows: As y — o,
the influence of vorticity, which is generated at the wall and diffuses across
the boundary layer, tends to zero as compared to the influence of the initial
velocity distribution, A transformation of (30) (see Appendix C) yields the
following convolution-type expression on the boundary-line ¢ = ¢§ of Hyy + Hyyyt

T setn, v
—G[g(xz, v - 1] - | = E Jﬁl : (33)
= -

=0
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It is shown in Appendix D that the solution of the linearized differ-
ential equation (29) furnishes a lower bound with respect to the solution of
the rigorous differential equation (10a) if the same initial and boundary
conditions (31) are used in both cases, A pertinent upper bound is also
derived in Appendix D. The gradient

og (&, Ilrg,) 20u (g, IIIE)
oV B oy

can be enclosed by these upper and lower bounds; see equation (D-28). The
constant number Us"in (D-28) can be specified a priori; see equation (39).
Equation (D-28), therefore, furnishes an estimate for the linearization error
of the outer solution, which is only asymptotically valid as y or { tend to
infinity.

As a first rough approximatipn, expression (32) may be used to represent
the wall friction coefficient according to the relation

ag (Q’ llfw) 23u (,@, WW)
v B oy

= Cf(X) '\/@ .

This procedure has been employed in References 1 and 2 in case of heat trans-
fer in laminar boundary layer flow. Equation (9) shows that G(%) = p(®) when
u,(?) = 0. Accordingly, equation (32) yields

=9
2 dp(n) __dn
c. (x) NRe = - JF . 34)
fa Nl 0 dn GZ—:—;T

The subscript a refers to "approximate." TFor the potential velocity distri-
bution ue(x) =2 sin ¢ past the circular cylindgr, Figure 10 presents both
cg(x) Re/s from (28), solid line, and Cgy (X) Re/ from (34), dashed line. As

in References 1 and 2, the agreement between the solutions being compared is
considerably improved when cg,(x)/cg,(xo) and c (x)/cg(xo) are plotted (see
Figure 11). Here x, is any arbitrary point witﬁin the range of the x-axis
where ug(x) may be replaced with sufficient accuracy by its initial tangent,
uz(0) x. When & is determined from ul(0) x = (aL/u,)x, the rigorous stagna-
tion point solution of both the Navier-Stokes equations and Prandtl's boundary
layer equations yields, according to Ch. V of Reference 48,

16



cp(x) NRe = 2.4652 % X. (35)

The parameter cg, (%) Re’ to be determined may be obtained from cfa(X)/cg, (%)
by multiplication of this ratio by the exact expression (35). According to
References 1 and 2, better agreement of the curves presented in each one of
Figures 10 and 11 would obtain if a slender profile were studied instead of
the circular cylinder. It is seen that equation (34) yields a rough
"engineering-type" approximation of cg(x) Re” whose evaluation requires
very little computation work. While (34) is a result of replacing u/u, in
von Mises' boundary layer equation (10b) by one, Lighthill [32] linearized
(10a) in a different way; he substituted

=]

-5 aﬁggé 0) =,jk2$/5)(aﬁ(x, 0)/5;)’

for U and obtained a nonlinear integral equation for cf(x) Re%.

VI. THE MATCHING PROCEDURE OF THE INNER AND THE OUTER SOLUTION

As has been mentioned before, the coefficients of the series expansions
(16) and (22) depend on the friction coefficient cf(x) in addition to their
dependence on the given initial and boundary conditions (11) - (14). Under
consideration of equation (9) between g and u, either expan31on (16) or
expansion (22) is now substituted into the expressions g (g, WQQ and
og (J, WQQ/BW appearing in the boundary relation (33) of the outer solution,
which thus becomes a nonlinear ordinary integro-differential equation for

Cf (X) >

N dg(n, cc(n), cx(n), ...)
-J?(g(ﬁ, ce (@, cf (@, ...) - 1} - ] faq, ! ——
=0 \/g -7
n=
(36)

It is remarkable that equation (33), which is part of the outer solution,
depends only on the parameters A,(x) = 0.5 cg(x) Re’ or ag(x) = cfé(x) Reﬁ of
the inner solution after the said substitution has been carried out. Solution
of the resulting integro-differential equation for A;(x) or a,(x) determines
the partial sums of the expansions (16) and (22) completely, Expression of
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dec () /4dg = dg (¥, *)/B¢ by partial sums of either expan31on then enables one
to evaluate the outer solution completely in the range Wa < ¥ < o by use of
equation (32). For both the inner and the outer solution, the outlined match-
ing process renders the values of g(ﬁ, V%) coincident and also the values of
og (7, *)/BW The values of 3%g(d, IF)/O>, however, as determined from these
two solutlons are different as is seen by comparison of the pertinent dif-
ferential equations (10b) and (29). -

By the outlined matching procedure, Prandtl's boundary layer problem has
been reduced to the solution of one approximately valid integro-differential
equation which replaces the partial differential equations (4) and (5}, or
(10), plus the pertinent initial and boundary conditions (11) - (15). This
reduction is representative of a class of hereditary-type problems which are
equivalent to integro-differential equations depending on one variable,

Numerical solutions of Prandtl's boundary layer problem are greatly
facilitated by use of the integro-differential equation (36) for cf(x), whose
derivation has been possible because the coefficients of the expansions (16)
and (22) are given by closed-form expressions, (19) - (21) or (24) - (26).
The coefficients of both Blasius' and Gortler's series expansions, though,
are determined by ordinary differential equations. In addition, these
expansions require analytical expressions for the velocity distributions
ue (x), uy(x), and vy (x) at the boundaries, whereas the method presented here
is applicable under less stringent conditions (see Section X), ’

VII, THE NUMERICAL SOLUTION PROCEDURE

A grid of not necessarily constant unit length AY is introduced along
the #(x)-axis to solve equation (36) for A;(¥) = 1/2 ce(9) Re’ or
ao(QO cg(D) Re’2, Suppose this solution has already been obtained stepwise
in the range 0 < J £ UN-,. The right~hand side of equation (36) then can be
approximated by Lagrangian integration methods for 0 < @ = @y.;. The function
og (2, WQQ/BW is unknown between @y.; and @y; it is approximated in this sec-
tion of the @-axis by a polynomial whose coefficients depend on the numerical
values which og/oy takes at the points @y, PN-1, PN-o2s «.-» on the stream line
v = wa. The right-hand side of equation (36) then can be evaluated in closed
form between @N-, and 2. This procedure removes the singularity of the
integrand at the upper limit @ = gy of the integral.

By use of (9), both g(&y, &) and dg (g, wg}/aw in equation (36) are
expressed in terms of the expansions (16) or (22), According to the recursion
formulas (20) or (26), the coefficients An and a in these expansions depend
on the intermediate coefficients, i.e., A, = An(d, Acq, oees Apc1s Ala, ..., Al_2)
and ap = ap (@, ags eees ap_q> aé, veos an_3) With the exception of the dashed
lines in Figures 5 and 6, the numerical solutions presented in this paper have
been obtained by replacing the first-order derivatives in these recursion
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formulas for Ap and a, by backward difference quotients, Aﬁ(gﬁ) = dAj(QN)/dx

= [Aj(QN) - Aj(ﬂN_l)] ue (@) /Y. The accuracy of this representation could be
imprdoved by uSe of unsymmetric finite expressions for AY(?). 1In any case, how-
ever, if a prescribed round-off error is not to be exceéded, the number of digits
carried in the computations must increase with the number of terms in the partial
sums of (16) or (22). This evidently is a disadvantage since partial sums of
(16) or (22) with at least 10 terms have to be used as x — Xg according to Fig-
ures 4, 6, and 9. Whereas Ap depends on Al;, ..., Aj-5 according to the recur-
sion formulas (20), the special expressions (21) for the coefficients Ap show
that the order of the highest derivative of A; in the equation for A, increases
considerably slower than n. The recursion formulas (26) for the coefficients

ap can be solved stepwise to give special expressions for the coefficients ap
comparable to the relations (21). Forthcoming applications of the solution
method presented here will be carried out by use of the special expressions (21)
for the coefficients A and by use of generalized versions of (21) to account
for mass transfer at the wall which is supposed to be zero in the relations (21).
The derivatives of A, in the expression (21) are replaced by the following
unsymmetric finite formulas, Ch, IIT of Reference 8:

r
A (Z. ) Ay (de_ ) A (d ) A, (Ee ) A (E )
AL (g =-—5Ag‘5+5—%1;"‘-10 Sag — * 5 i
A (2 5
137 22P) (s v
60 AP 6 A By
A, (2 ) Ay () Ay (e L) Ay (g )
M) = -5 ;(AE)ST’f 61 1;@;)3 - 13 %AT‘I;;—“L 107 T(@S"
A () A ()
< - 77 _6(—12,@-_;-2--'- 15 4(&@11;]2 = igg (Ag)4 AY_I(/@N)>
(37)
Ay (F ) A (g ) A (Z_ ) A (2 )
Y (g = - 7 A(Agj)g + 41 4(&3 - 49 Z(Ag)g + 59 2(@)5
A (g ) A, (7))
- T s 17 g - (9% AT,
A (g ) A, ( ) A, () A ()
AY(E) = - 2 l(Ag;Z’ + 11 l(iNg;f; - 24—2A%3—+ 26 T@?LE_
As( ) Ay (2
\ - 14Wf&fi-+ 3 —hE - e 97 ATy,
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The last term in each one of these relations indicates the next nonvanishing
term of the Taylor expansion at @y.

1t has been shown in the preceding paragraph that both g(gy, Wé) and

og (Zy» wg)/aw can be expressed as functions of the unknown numbers A,(Zy) or
ao(#y) when the method under discussion is applied to determine the solution
at the point @ = @y. 1In this way, the integro-differential equation (36) with
the upper limit @y of the integral becomes a nonlinear ordinary equation for
A, (B or ay(@y), provided (36) has already been solved in 0 < @ = @y_;. This
ordinary equation can be solved iteratively, starting from a straight-line con-
tinuation of the numerical values of A; or ay at the grid points @N.o and Zy-1.
The results presented in this paper have been computed by use of a tolerance

of 0.01 percent in the iterations for A;(gy) or ay(¥y).

Whee partial sums of expansion (22) are used to express g(QN, Wé) and y
og (M, wa)/éw in (36) as functions of @y and ag(@y), the powers [V - ¥, (F17”
in (22) can be evaluated directly since | = W& = const. However, when partial
sums of (16) are employed to determine Al(QN), the powers of y in (16) cannot
be obtained directly since the intersection of the stream line ¥ = W& with the
grid line ¢ = ¢y depends on u(@dy, ¢§) and thus on A;(ZN). The results pre-
sented in this paper by use of expansion (16) have been obtained by employing
the relation

By U
K _ % rg TVN-1 Yy
R N S BTG 8

which represents the'tangent to the stream line V = Wé at the point Zy_i, wg.
A better value for y§j could be obtained by use of a quadratic equation for
¥ o= W& between @y.; and @y which employs the already known values of Ju/ox,
ou/dy, ov/dx, and ov/dy at the point Zy_i1, VG-

The differential equation (29) for the outer solution has been obtained
by substituting one for u/u, in the rigorous differential equation (10b). 1In
general, u/ue decreases as @ increases along any given stream line y = Vg in
the boundary layer; i.e., the linearization error of the outer solution increases
with the coordinate ¢ which measures along the stream line § = Wé- It is
specified, therefore, that u/ug along any given stream line changes only within
the arbitrarily prescribed bounds U, and U,

0 < Us < u(d, \p;)/ue(ﬁ) £ U < 1. (39)
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The inequalities 0 < Ui and Ul’< 1 are a consequence of Section II. When, for
the first time, u(g, y3)/ue(P) gets smaller than Uz at the grid point oy

(see Figure 1), the employed partial sum of expansion (16) or (22) is evaluated
on the line @ = Jot1, ¥ > ¢a to determine by trial and error a point Fuyti,

Y&+, at which

w(@ s Vi)
ue(ga%l)

is approximately equal to U;. This fixes a new stream line ¢ = wg*l which
serves as the boundary of Hy and Hig obqe In general
b

lim g(d, ) # lim g, ¥

[/ | + 0

g—>goc+1-0 o1

within the section W& < ¥ < Y&+, of the line ¥ = Zyp1. The same type of dis-
continuity affects og(¥, V)/0F in this section. These discontinuities do not
have any consequences with respect to the approximate calculation procedure
being presented. The function Jg(d, W&+l)/5¢ is needed to evaluate the right-
hand side of (36) in the range 0 < @ = {y+1. This function can be determined
along the new stream line ¥ = W@+1 by employing (32).

The start of the numerical solution procedure is now considered. Avail-
able standard quadrature formulas require a sufficient number of grid points
J1 between @ = 0 and @ = @N-, to evaluate the integral in the right-hand side
of (36). Because of this reason, it is advisable to employ the rigorous stag-
nation point solution in a sufficiently small neighborhood H, (Figure 1) of
the stagnation point before the outlined numerical solution procedure of equa-
tion (36) is applied beginning at the grid point @(xo) + AJ. The station
X = Xg is determined so that up(x) can be approximated in Hp with sufficient
accuracy by the straight line expression ue = (al/uw)x of the stagnation point
solution, see Ch. V of Reference 48. Tables of this solution present the
function (Qu/dy)/x = (Og/dV)/2x which appears in the integrand of equation (36).
The portion between @ = 0 and @ = @(xp) of this integral then can be evaluated
by use of standard quadrature formulas and interpolation of the tables. The
numerical evaluatlon of the integro- dlfferentlal equation (36) begins at the
point @(x,) + AU, wo’ whose coordinate W is selected so that the stagnation
point solution gives u(xg, Wo)/ue(xo) U,; see (39).

According to the preceding paragraph, the numerical solution procedure of

equation (36) starts with a relatively small increment AP in order to have a
sufficient number of grid points @; in the range 0 < 2; < #(x5) to be handled
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by use of the stagnation point solution. This step size AJ may be increased
several times during any particular boundary layer evaluation to save compu-
tation time. In case of a perforated wall with suction or blowing, AY must
be small enough as compared to the width of the slots in the wall. Evidently,
significant round-off errors are incurred if AJ is too small as compared to
the number of digits carried in the computation scheme., The numerical results
presented in this paper have been obtained by use of an IBM 1620 digital com-
puter with 40,000 data storage spaces., Seven digit numbers (and two digit
powers of ten) have been used in the computation program.

VIII, ERROR ANALYSIS

Witting [72] has shown that Prandtl's boundary layer equations (4) and
(5) are stable with respect to the propagation of small errors (""disturbances"
of the velocity profile) if Du/Dt = u(ou/dx) + v(ou/dy) = 0. The "stability
boundary" Du/Dt = O begins at the point of maximum shear stress at the wall
and approaches asymptotically the line x = x, which is defined by dp(xm)/dx = O.
In the vicinity of any point (x1, y;) where Du(x;, y;)/Dt < 0, disturbances
exist which increase at least locally with x > x;. It is mentioned without
proof in Reference 72 that von Mises' boundary layer equation (10) is stable
with respect to the propagation of errors in the region of decreasing pressure.

The numerical solution procedure presented in this paper employs equa-
tions which are closely related to, but nevertheless different from Prandtl's
original boundary layer equations. While instability of the presented method
with respect to the propagation of errors then is possible even in the boun-
dary layer region where Du/Dt = 0O, this type of instability has not been
observed so far in any numerical application of the method. Difference
methods are stable in this respect if a certain step size ratio is not
exceeded [29, 71].

The derived method is subjected to the unresolved convergence (and thus
existence) problem of the expansions (16) and (22). 1In addition, the following
sources of error can be listed:

(a) A sufficiently large number of terms has to be evaluated in
the partial sums of (16) or (22) to represent u accurately in
sections x = const., 0y < y*(x). Since y*(x) in general
increases with x, the number of terms available for evaluation
may be too small as x — xg.

(b) The outer solution, which asymptotically tends towards the
rigorous solution as y (or ) goes to infinity, is used at
at relatively small values of y (or V).

(c) Linearization errors, round-off errors, etc., are incurred in
the numerical solution procedure.
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The influence of error sources (a) and (b) may be diminished if partial sums
of (16) or (22) are used for a subregion of Hy adjacent to the wall only.

For the remainder of Hy, solutions of a linearized version (C-13) of von Mises'
boundary layer equation (10b) are employed according to Appendix C.

The discussions of this section indicate that both the validity and the
accuracy of the derived method are rather questionable, as is true for the
ma jority of approximate methods in boundary layer theory. These shortcomings
of the derived method can be overcome if the method is employed together with
the lemma of Nagumo and Westphal to determine rigorously valid bounds of exact
solutions. The calculation procedure for these bounds is outlined briefly in
Appendix D.

IX, APPLICATION OF THE METHOD TO THE CIRCULAR CYLINDER

The method as derived in this paper requires the boundary layer to begin
at a forward stagnation point. This condition is satisfied by the vast
majority of flows past profiles in engineering fluid dynamiecs. With slight
modifications referring to the initial condition (11), the method can be
adapted to profiles with a sharp leading edge. The desirable test of the
accuracy of the method, however, has to be carried out here by use of boun-
dary layer solutions beginning at a stagnation point. The most important
test solution of this type is Blasius' series expansion for profiles symmetric
with respect to the free stream, The shortcomings of the available partial
sums of Blasius' expansion are outlined in Appendix A. These deficiencies
have already been discussed in Section IV with reference to the (u/ug)-
profiles in the boundary layer past the circular cylinder with ug = 2 sin @
and uy = vy; = 0 (see Figures 2-9). For these velocity distributions at the
boundaries, Figures 12 and 13 present cg(x) Re’ as following from the partial
sum (28) of Blasius' expansion (27) and from the derived method. The dashed
lines in both figures have been obtained by employing the stagnation point
solution for 0 < x = 0,077, i.e., 0 < ¢ = 8.75° (see Section VII). The dashed
line in Figure 12 has been computed by use of expansion (16) for x > 0.077,
whereas the dashed line in Figure 13 is a result of employing (22) for
0.077 < x = 0.459 and expansion (16) for x > 0.459, This procedure is
explained by the singularity of expansion (22) at the separation point X = Xg.

Figures 12 and 13 exhibit satisfactory agreement between Blasius' expan-
sion and the derived method in the range 0 = x < 0,785 of decreasing pressure.
Since Blasius' expansion is reliable in this region according to Appendix A,
the error sources listed in Section VIII have only negligible influence for
x < 0.785. This is not necessarily true as X — Xg. Owing in particular to
the increase of the displacement thickness, the maximum ordinates y*(x) or
V¥ (x) of the partial sums of (16) or (22), respectively, increase considerably.
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To clarify this situation, Table 1 presents at several stations x = const.
numerical values of the individual terms in the partial sums of expansions (16)
and (22) as employed to obtain-the circular cylinder results in Figure 13.
Table 1 lists these terms at the boundary lines | = w&(x, y*) = const. of Hy
where |Ap y?/nl| and |a, y"| take their maximum values. As exemplified by
the column for x = 0.4586 in Table 1, the numerical values of IAn y*1/n' | and
Ian W*nl decrease rapidly with increasing index n if only small and medium
values of x are considered in the range 0 < x < xg. A. X — Xg, however, the
decrease of |An y*n/nllbecomes slower and slower as has been explained above.
Since the higher order terms have an appreciable influence on the numerical
values of the partial sums as X — xg, the data presented must become somewhat
unreliable because the coefficients Ap and ap have been computed by use of
backward difference quotients for the derivatives rather than by the more
accurate unsymmetric finite expressions (37) (see Section VII). Even though
the individual terms |Ap y*0/n!| listed in Table 1 do not decrease fast enough
at x = 0.7974 as n increases, quite satisfactory results for theipoint of
separation are obtained as shown in the following.

Table 2 compares results for the point of separation, x = g and @ = Qg,
of the boundary layer flow past the circular cylinder with ug = 2 sin ¢ and
Uy = vyp = 0, According to Ch. IX of Reference 48, Blasius' expansion (28)
gives separation at g = 108.8°; this value is unreliable according to Appendix
A and as seen by comparison to all the other data listed in Table 2. Accord-
ing to Ch, XII of Reference 48, a one-parameter Kfrmdn-Pohlhausen integral
method gave separation at the same point as Blasius' expansion (28). Kosson's
method [28], see Appendix B, yields separation at ¢g = 102.45° which is con-
siderably lower than the other data listed in Table 2, Terrill's difference-
differential method [57, 58] gives separation at @g = 104.45°. Witting [71]
determined g = 105.1° by application of Blasius' expansion for 0 < x = 0,75
and a certain explicit difference scheme for x > 0.75. Four results of
Schonauer's implicit difference method [54] employing Crocco variables are
listed, where h represents the increment of x, and n the number of grid points
in the other direction. The approach towards xg = 0.9117 is seen as h and
n~1 decrease., With regard to the derived method, the computer run underlying
the dashed line in Figure 13 indicates a change of sign of cg(x) Re’2 between
the neighboring grid points 0.894 and 0,906, 1In the column pertaining to the

derived method, therefore, separation is indicated at xg = 0.90.

Even though error estimates are not available for any one of the data
listed in Table 2, inspection of the various separation points renders
xg = 0,911, i.e., @g = 104,4°, the most likely answer. It is expected that
the results of the derived method will approach this value as the stepsize Ax
is decreased and as the calculation method becomes more accurate in the vicinity
of the separation point due to employing the special formulas (21) for the
coefficients in connection with expressions (37) for the derivatives. Even
now, the results of the derived method look quite promising in view of the
amount of evaluation work involved: they have been computed by s.lving an
integro-differential equation depending on one variable only, whereas
Schdnauer's, Terrill's, and Witting's results follow from difference «nd dif-
ference-differential methods with two independent variables,
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X, APPLTICATION OF THE METHOD TO GENERAL CYLINDERS

The application of the derived method to arbitrary smooth profiles can
be explained appropriately by discussion of the following special case: the
flow past an impermeable cylinder with elliptic cross section having a ratio
= b/a = 0,25 of minor axis b to major axis a and the major axis aligned with
the free stream.

At first, the potential flow distribution ug(xg) is determined by con-
formal representation of the ellipse (subscript E) on the circle (subscript C).
The conformal representation relates the sinusoidal ue(xc)-distribution to

1 4+ A
J1 o+ A2 ctg® @C'

ue (XE)/uoo =

(Ch. II of Reference 49) where the polar angle ¢@¢ measures from the stagnation
point, The conformal representation gives the following relations between Qg
and the Cartesian coordinates g and 1 of the plane of the ellipse: & = a cos®n
and 1 = b sin @g. The arc length xp is determined as a function of £ (and
thus @) by use of elliptic integral tables. To facilitate the computer
evaluations, ue(xg) and its pertinent derivatives are represented by poly-
nomials

4
& N
X, = g n g (40)
n=0
and r for ﬁU’E s f s Gyrr,E, =0, 1, ...
5
_ n
u, = Z{j Bo,n Xg (41)
n=0 /

Each pair of these polynomials is valid for a suitably selected section of
Pg-scale between &y g and Foyi E. For the ellipse under discussion, Table 3
presents the coefficients Og . n and Bo,n and also their ranges of valldlty,'
Qb,E to Q6+1,E- The follow1ng expre551ons have been used in H,
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0,00313
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o 39.8 Xg 0= Xg
and for and (42)

«IZQJE/39.8, 0 =

0.1948 x 1073,

m‘&
(I

*E

For the ellipse, Figure 14 compares results of the derived method by use
of expansion (16), solid line, and expansion (22), dashed line, both with 9
terms evaluated. It is remarkable that expansion (22) yields good results
quite close to its singularity at the separation point. Table 4 presents the
numerical values of the individual terms A, y%/n! at station x = 0,7151 and
y* = 1,830, It is seen that the terms decrease fairly rapidly with increasing
index n, even though y* exceeds one considerably and even though the u-profile

in sections x = const. has acquired a point of inflection at x = 0,53, i.e.,
a considerable distance upstream of x = 0,7151,

Unfortunately, no accurate data yere available to check the curves pre-
sented in Figure 14. Results of a Kdrmdn-Pohlhausen integral method for the
ellipse under discussion are given in a very small graph in Ch. XIT of Refer-
ence 48, Since this graph can be read only with considerable error, a com-
parison to the results derived here is rather questionable. It should be
mentioned only that the point of separation is estimated at x = x/L = 0.86
from the graph in Reference 48, whereas the solid line in Figure 14 indicates
separation at x = 0,86,

It is quite remarkable that the derived method gives satisfactory results
for the ellipse under discussion even though equations (40) and (41) approxi-
mate ug (Zg) by polynomials whose derivatives possess at least one discontinuity
at each transition point between neighboring polynomials. It may be concluded
that the derived method is applicable if ue(x) is represented by .2 function
with piecewise continuous derivatives provided the discontinuities are suf-
ficiently small, This consideration should also apply to uy(x) and vy (x).

Both Blasius' and Gortler's expansions (see Introduction) require an analytical
function for ue(x) or the representation of ue(x) by one polynomial for the
entire x-range to be covered by the series solution.

XTI, APPLICATION OF THE METHOD TO BOUNDARY LAYER FLOWS WITH MASS TRANSFER

It is known that the separation point of a laminar boundary layer can
be influenced by mass transfer across the wall, e.g., Ch, XIII of Reference 48,
Both blowing and suction demand a wall with pores or slots and a suitable
plumbing system. The local inclination § = tg™L (vyy/uy) of the mass transfer
vector with components puy(x) and pvy(x) is. determined by the angle 6 which
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these channels make relative to the wall's outer tangent plane at station

X = const. Design considerations require |6| to exceed a certain minimum

value, The case 6 = 0 represents a moving wall without mass transfer. The

case uw’j_l(x) = Cj.1 = const, for x5, = X = X3 and vi(x) = 0 can be realized by
placing a conveyor belt of speed cj-1 1n the segment Xj-1 = X = x5 of the wall,
If the pores and/or slots are sufficiently densely distributed over a region

of the wall, the rapidly fluctuating functions puy,(x) and oV (x) may be averaged,
i.e., replaced by smoother or even constant functions puy(x) and oV (x).

The derived method has been applied to study the boundary layer onm a cir-
cular cylinder by use of expansion (16) for the five mass transfer situations
listed as cases 2 - 6 in Table 5. The function M(x) in Table 5 is defined as
follows:

0 for 0 = = 0,08,
M) = (Nx) for 0.08 = x = 0,12, and : (43)
0.2 for 0.12 = S Xge
The continuous transition function N(x) satisfies the conditions N(0.08) = 0

and N(0.12) = 0.2, TFor simplicity, mass transfer is assumed to be zero for

x £ 0,08 so that the tables given in Ch, V of Reference 48 can be used for the
stagnation point solution in Hp., It is possible, though, to solve the perti-
nent ordinary differential equation in a vicinity of the stagnation point if
both uy(x) and vy (x) are constant there,

Figure 15 presents cg(x) Re’2 as following from the derived method for
cases 1 - 3 in Table 5, 1In these three cases, uy(x) = 0, As compared to a
zero mass transfer situation, normal suction raises the cg(x) Re’-curve and
delays separation at the same time, Normal blowing has the opposite effect.
Figure 16 shows cg(x) Re’2 for cases & - 6 in Table 5 which pertain to positive
tangential velocity components at the wall, The normal mass transfer component
pvy(X) exerts the same qualitative effect on the separation point regardless of
whether puy,(x) is positive or zero. Comparison of Figures 15 and 16 shows that
the application of a positive tangential mass transfer component puy,(x) dimin-
ishes cg(x) Re’2 and shifts Xg in the downstream direction, Figure 17 presents
cg(x) Re’2 for cases 1, 2, and 4 of Table 5. This figure demonstrates that the
application of the tangential mass transfer component M(x) = 0, case 4, more
than ‘compensates for the shift of xg in upstream direction when a normal blow-
ing situation, M(x) =z 0, case 2,. is compared to zero mass transfer, case 1,
With regard to transpiration cooling of a wall, it may be concluded that the
undesirable influence which normal blowing exerts on the location of the separa-
tion point can be avoided by inclining the jets emitted from the slots or holes
in the downstream direction,
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Figure 18 presents cg(x) Re’: as following from the derived method by use
of expansion (16) for a cylinder with the elliptic cross section employed in
Section X: ratio A = b/a = 0,25 of minor axis b to major axis a, and major
axis aligned with the free stream, The solid line represents the zero mass
transfer case of Figure 14. The dashed line stands for the mass transfer
situation defined in equation (43) when N(0.12) = 0,2, uyp(x) = 0, and
vg(x) = - M(x). It is seen in Figure 18 that this dlstrlbutlon of suction,
-0.2 = wy(x) = Re’? V5w (x) /G, = 0, has negligible influence on cg (%) Re/ in the
region of accelerated boundary 1ayer flow except at the peak of the wall
friction.

The derived method has been applied by use of expansion (16) to calculate
the boundary layer past a circular cylinder with ug(x) = 2 sin ¢ and suction
through a sequence of slots in the cylinder wall. A continuous distribution
v(x) = - 0.2 sin® [(x - xg)/(%py1 - %Xp)] was assumed over the width
Xg = X = xpy; of each slot. The smootE curve representing cg(x) Re’2 for the
circular cylinder without mass transfer becomes wavy due to the presence of
slots. Numerical results are not presented here because of a still unresolved
stability phenomenon: the magnitude of the terms A, y%/n! in expansion (16)
decreases rapidly with increasing n provided the slots are restricted to a
region where c%(x) Re’ exceeds a small negative number; the presence of slots
in the region of strongly decreasing wall friction, though, causes the compu-
tation procedure to become unstable, This failure of the derived method may
very well disappear if special formulas for the coefficients are employed,
similar to (21), in connection with the expressions (37) for the derivatives
of Al(x) Necessarily, however, the accuracy of approximating the inner solu-
tién by polynomials with a given number of terms must decrease as cg(x) Re’
becomes wavy due to the concentration of mass transfer in narrow slots, A
comparable influence on the accuracy is to be expected for wavy functions ue(X);
in particular, theorem (IIa) in Section II indicates that the number of points
of inflection of u(x, y) in sections x = const, increases together with the
changes of sign of ul(x). These considerations show that the accuracy of the
derived method depends on the smoothness of u(x, y) in H.

4 ’
XITI, COMPARISON WITH KARMAN-POHLHAUSEN INTEGRAL METHODS

As is exemplified by the separation data listed in Table 2, the accuracy
of one-parameter integral methods is rather unsatisfactory in the region of
fncreasing pressure. This is mainly due to the fact that the upstream history
is neglected in the calculations at any grid point, At the expense of compu-
tation work, the accuracy of integral methods can be increaséd by use of two
form parameters. At every grid point, a double iteration is required to deter-
mine these two parameters, whereas the method derived in this paper requires
only a single iteration for 2A,(x) = af(x) = csf(x) Re’2, 1In addition, however,
the derived method involves a reevaluation of thé integral in (36) at every
grid point, Both the derived method and integral methods are applicable when
the velocity distributions ue(x), u,(x) and vy (x) at the boundaries possess
piecewise continuous derivatives as discussed in Section X,
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As compared to integral methods of any type, the derived method possesses
the following advantages in accounting for the physical characteristics of
boundary layer £flow:

(1) The integral in the right-hand side of equation (36) represents
explicitly the entire upstream history of the boundary layer,
whereas the ordinary differential equations of integral methods
depend explicitly only on an infinitesimal neighborhood in flow
direction. The importance of accounting for the entire history
of the boundary layer is discussed in the Introduction in con-
nection with References 39 and 50.

(2) The derived method represents the asymptotic transition u(x, y)—
Ue(x) as y - «» in a rigorous way, whereas this process in inte-
gral methods can be approximated only by use of special functions.

(3) The series expansions (16) and (22) satisfy an infinite number of
compatibility conditions at the wall (see Ch, VIIT of Reference
48) whereas integral methods in general fulfill only the first
one of these conditions., Partial sums of (16) or (22) with n
terms still satisfy (n-l) compatibility conditions.

XTIIT, CENERALIZATIONS OF THE DERIVED METHOD

A given axisymmetric boundary layer problem may be solved by applying the
derived method to the planar boundary layer related by Mangler's transforma-
tion, e,g., Ch. X of Reference 48, By use of assumptions as Prandtl number
one and linear viscosity-temperature relationship, Howarth [23], Illingworth
[25], and Stewartson [56] have presented transformations which give compres-
sible boundary layer solutions in terms of incompressible solutions of the
type discussed in this paper. 1In addition to these rather trivial extensions
of the range of applicability of the derived method, two genuine generalizations
are discussed in the following.

According to p. 152 of Reference 15, von Mises' transformation (6) and
(7) yields the following differential equations for stationary laminar compres-
sible boundary layer flow of a perfect gas with constant Prandtl number:

- da =
ol e _-=0 (---2u
PLSE ™ Pe Yeaxg ~ o 7 (44)
and
- dT — - 2
o -z oo e Eia (o o), (nd
PELE 3% T Pe Cpe Ye a®  Pr o HeCy of o) +u <?u 6%) * (43)
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The thickness of the velocity and the temperature boundary layer are propor-
tional to Re’” and Re’ Pr/, respectively, according to Ch, XIV of Reference 48,
Since Pr = 1 in general for one-component gas flow, inner and outer solutions
of both the velocity and the temperature boundary layer, respectively, may be
matched to each other along one and the same curve w*(x, y), separating the
region Hy of the inner solutions from the region Hyy of the outer solutions.
The parameter

Q= f f, P, G, d% (46)

is introduced to replace x or @. The outer solutions are defined by initial
and boundary conditions of the type (31) and by the following linearized and
asymptotically rigorous forms of the differential equations (44) and (45):

o® - ui) ) % (u? - ui)

and
O(T - T)) ; 9%(T - T))
_— = (48)
o0 Pr oV .

After suitable changes of notation, the closed-form expressions derived in
Appendix C represent the outer solutions of (47) and (48). 1In particular, along
the stream line sections { = W& of the boundary ¥*(x, y*), the outer solutions
take the form of (36)., The inner solutions of the velocity and the tempera-
ture boundary layer can be expanded in series of the type (16) or (22). Sub-
stitution of partial sums into the said boundary relations of the outer solution
yields two simultaneous integro-differential equations of the type (36) for

the friction coefficient cg(x) and the heat transfer coefficient cy(x). In
analogy to Sections VI and VII, this system can be solved in a stepwise way

by use of a double iteration process at each step. The interrelationship
between u and T in compressible flow causes u(x, y) and T(x, y) to possess
maxima, minima, points of inflection, etc,, for initial and boundary distri-
butions which exclude these complicating features in constant-property flow,

[4]. 1In view of discussions at the end of Section XI, this situation requires
careful application of the derived method to compressible boundary layer flow.
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Because of the underlying assumption Re — o, Prandtl's boundary layer
theory implies u = O(Re®) and v = O(Re‘él i.e., |v| < u, e.g., Ch, VII of
Reference 48, These implications of Re — = are violated in a certain vicinity
of the wall if normal mass transfer is prescribed, u,(x) = 0 and v (x) £ 0.
Provided Re >> 1 and Re% |¥,| << G, however, this vicinity is restricted to
a narrow subregion of Hy adjacent to the wall. TUnder the same conditions, the
thickness of the boundary layer is sufficiently small so that potential flow
past the given profile determines ug(x) with the required accuracy. To check
the validity of boundary layer solutions with normal mass transfer, a special
second-order boundary layer theory is proposed which in Hy employs the com-
plete Navier-Stokes equations (e.g., Ch, V of Reference 48),

= Re U2 T 2

du, ,ou__9p L (o%u o%
TV T T X Re(x y

and (49)

ov ov op , 1 (% %
Y 3x +v dy  ~ dy * Re <§§z + dy2 )2

and in H the linearized version (29) of von Mises' boundary layer equation
(10). 1In Hy, the expansions (16) are assumed for u(x, y) and v(x, y) which
satisfy the continuity equation (4) identically. The corresponding expansion

=) B & (50)
n=0

for the pressure p(x, y) in Hp has to satisfy the condition

o0
*0 .
) 3,00 T = pGx, yH(0) - Be() = given (51)
n=0
since p(x, y) = pe(x) in Hyy and on the boundary line w*(x) separating Hyt and

Hyys Substitution of (16a), (16b), and (50) in (49) yields the coefficients
as follows:
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A2 = Re B:), Bl = - A!L Re_l,

= - 2AY, Bs = - B (52)

b
&Y
|

>
ks
L

= Re Ay A} - Re B! - BY,

The coefficients An(x), n =z 2, and Br(x), n = 1, depend on A;(x) and By (X)
only. The expansions (16) and (50) with the coefficients given by (52) are
substituted in the boundary relation (33) of the outer solution, A system is
obtained consisting of the integro-differential equation (36) and the ordinary
equation (51)., After appropriate modifications have been made to account for
(51), this system can be solved in a stepwise way according to the procedure
outlined in Section VII.

X1v, CONCLUSIONS

Prandtl's boundary layer problem is solved by matching outer and inner
solutions along the stream line segments { = Wé of the curve ¥*(x) shown in
Figure 1, The closed-form outer solution is obtained from a linearized version
of von Mises' boundary layer equation; the linearization error tends to zero
as y -, The outer solution yields a relation between g(@, V%) and og(d, V%)/oV.
With very little evaluation work, a rough approximation of cg(x) Re’2 is obtained
by evaluating this relation at the wall, i.e,, for V{5 = V. This approximation
yields a lower bound of the exact friction coefficient if uji(x) > 0.

The inner solution is represented by expansion (16) in powers of y or by
expansion (22) in powers of (y - ww)é. The coefficients of these expansions
depend on cf(x) Re’ and on the given velocity distributions ue(x), uyx(x), and
vy;(x) at the boundaries. The majority of the numerical results presented in
this paper has been computed by use of general expressions for the coefficients
and backward difference quotients for their derivatives, According to Section
IV, higher order terms cannot be determined with sufficient accuracy in this
way. Special formulas for the coefficients and unsymmetric finite expressions
for their derivatives are proposed because of this situation,

In case of the circular cylinder with ug = 2 sin ¢ and uy = vy = 0 the
accuracy of partial sums of (16) or (22) is tested by use of the available
partial sum of Blasius' series expansion. The said deficiency in computing
the coefficients manifests itself only in a small vicinity of the separation
point. Except for this vicinity, a ten-term partial sum of (16) is sufficient
to represent Blasius' u~profile up to u/ug = 0.8. Even at x/xg = 0.85/0.90,
the curves representing partial sums with 9, 10, and 11 terms differ very little
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up to u/ue = 0.9 if certain shortcomings of Blasius' expansion as x — Xg are
taken into account. Therefore, a negligible error of the inner solution is
to be expected in case of the circular cylinder if ll-term partial sums are
matched to the outer solution in a range of u/ug values between Us = 0,7 and
U; = 0.85, According to Section VII, U; and U, determine the choice and
length of the stream line segments { = Wé of the curve y*(x) separating the
regions of the inner and the outer solutions.

Even though cg(x) Re’2 has been computed by use of the said inadequate higher
order coefficients, the results for the circular cylinder yield separation
quite close (5(xg)/xg = 0.01) to the most likely location as given by other
methods. Still better results are expected as the stepsize Ax is decreased
and as the more adequate way of calculating the coefficients is employed.
Even now, however, the results of the derived method, as compared to difference
and difference-differential methods, look quite promising in view of the com-
putation work involved.

The accuracy of approximating the inner solution by polynomials with a
given number of terms must decrease as cg(x) Re’2 becomes wavy due to the con-
centration of mass transfer in narrow slots. A comparable influence on the
accuracy is to be expected for a wavy function ug(x). The derived method is
applicable if ue(x), uy(x), and vy(x) are represented by functions with piece-
wise continuous derivatives, provided the discontinuities are sufficiently
small, As compared to integral methods with any number of form parameters,
the derived method possesses distinct advantages in accounting for the physical
characteristics of the boundary layer flow. About as much numerical work is
involved as in two-parameter integral methods. The method as derived requires
the boundary layer to begin at a stagnation point. The method can be adapted
to profiles with a wedge-type nose,

By use of Mangler's transformation, the derived method is immediately
applicable to axisymmetric boundary layer flow. If Howarth's, Illingworth's,
or Stewartson's transformations are considered to be valid, the derived method
applies to compressible boundary layer flow. The outlined generalization of
the method to compressible boundary layer flow with arbitrary property laws
requires careful application because of the complexities of possible velocity
and temperature profiles. The other generalization, a special second order
boundary layer theory, demands very little extra work as compared to the pre-
sented version of the method.

As is true for the vast majority of other approximate methods in boundary
layer theory, no general error estimate is available for the derived method.
For the outer solution, though, an estimate of this type is derived by use of
the lemma of Nagumo and Westphal. According to the brief outline given in
Appendix D, this lemma may be employed in conjunction with the derived method
to determine rigorously valid bounds of exact boundary layer solutions.
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TABLE 1. NUMERICAL VALUES OF THE INDIVIDUAL TERMS IN PARTIAL SUMS OF (16) AND
(22) FOR THE CIRCULAR CYLINDER (FIGURE 13)
Expans:.on (22) Expansion (16) ‘
= 0.4586 x = 0.7010] x = 0.7974
cp=52-6 ¢ = 80.3 o= 91l.4
V* = 0. 48127 y* = 0,9670 y* = i.063
oy v 17378 Ay yE | 2.4066 | 1.8705 |
aq ¥ —40;39470»7 A; y*/2}  -0.61951 | o.108s3
oo /2 | -o.07846 || as yresar _ o | o ]
as Y*2 T0:01866 MA;L§:4}21 -0.58465 | -0.91655
a, /2 0.71788 x 1072 || "az y#5/5! o0.53899 | o. 63;29.
ag Y3 0.47181 x 10-2 ;_y;gﬁﬂ | 10:645?:5—7 _'O 012295
ag U712 -8.1764 x 10-* || a y*7/7'_‘ | -oasesz | -0.21017
a, Y 1.8440 x 10-% A; y*s;g'_ _u¥u".0 099186x“_ 0. I&;g6WA_
ag y*° 2 -3.4179 x 10-5 Ag y%°/9! _ M-S.-(JQS'33O W-ko 034—4;5—
Ao y*9/100 | | ~0.053514 |
A;l y*ll/lllWi ) ] 0. 07785;_—_
A, y*12/12!) ] -0. 0365;;;_
u(x, *)/ue(x) 0.7967 u(x, y*)/ue(x) 0.8458 0.8009
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TABLE 2,

SEPARATION POINT x; OF THE BOUNDARY LAYER AT THE CIRCULAR CYLINDER

V"

Author Blasius ! Kosson Witting Terrill Schonauer Adams/Berry
Reference 48, Ch, IX 48, Ch. XII 28 71 57 54
f 1 .
{ Comments Partial One param- | Matching | Difference Difference- Diffexrence Method Matching
‘ sum (28) eter inte- | method, method in differential{ h=0,1 | 0.1 0.005! 0.005 Method,
of series | gral method| approxi- continua- me thod n=10 | 100 100 i 300 prelimi~
expansion mation tion of (28) nary "'_j
results
Separation |
Point _ ] 0.9495 0.9495 0.8943 0.917 0.9115 0.898 | 0.9015 | 0,911} 0,9117 0,90
x = ¥/2R
iigi?;mn 108,8° 108,8° 102.45° | 105.08° 104.45° 102,90° [103,30° |104.397104,47°| 103.13°
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TABLE 3, COEFFICIENTS IN THE POLYNOMIAL EXPRESSIONS (40) AND (41) PERTAINING TO THE ELLIPSE 1:14
X-range Z-range Co Oy O O3 Olg
0.00313 = x = 0,01975 0.0001948 = ¢ = 0.0070142 | 1.8818843 x 107° 6.7492604 | -1822.5411 |305990.15 -18754890.
0.01975 = x = 0,0603 0.0070142 = ¢ = 0.043883 .0074851 2,020792 ~-45.024752 | 944.09701 |-7800.,1065
0.0603 = x = 0,1268 0.043883 = @ = 0,115 .01973704 . 94900275 -.59872593 | 1.0791514 |-,77037815
0.1268 = x = 0,2156 0.115 = ¢ £ 0,225 .01973704 .94900275 -.59872593 | 1.0791514 |-.77037815
0.2156 = x = 0,88 0.225 £ g £ 1,05 .035 .81 0 0 0
o B1 Pz Bz Ba Bs
39.794878 71,373905 -37698,06 967820,68 -8055491.6
-.7586 55.5 -1222.74 15310.324 | -101552,94 273254.8
.58034 | 12,719 -94.949 253.07 0 0
Continued
.93789 3.3253945 -13.5813 20.012511 0 0
1.09941 1.0128348 -2,62257 3.129756 -1.45936 0




TABLE 4, NUMERICAL VALUES OF THE INDIVIDUAL TERMS IN A PARTTAL SUM
OF (16) FOR THE ELLIPTIC CYLINDER (FIGURE 14)

Expansion (16)
x = 0.7151 [

t y* = 1.830
Ay y* 0.87662
Ap y¥5/2 0.14866
As y*°/3! 0
Ay y**/4. -0.29075
As y*°/5! 0.14806
Ag y*©/6. 0.83699 x 10-2
Ay y*7[7° -9.6007 x 1072
Ag y*8/8! 7.1677 x 1072
Ag y*9/9" 0.35023 x 1072
u(x, y*)/ue(x) 0.6986

TABLE 5. AUXILTARY FUNCTIONS FOR MASS TRANSFER AT THE CIRCULAR CYLINDER

Case uw(x) vy (%)
_“1 0 0
2 0 M(x)
3 0 -M(x) See equation (43).
4 M(x) M(x)
5 M(x) 0
6 M(x) -M(x)
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The subregions Hy, etc., are defined in Section II. Heavy lines
refer to the boundaries of subregions. The subscript O takes the
values 0, 1, and 2 before separation, x = Xg, is reached.
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Hy,

J
N
:q * o
J &y

FIGURE 1, FLOW PLANE AND NOTATIONS



B refers to the available six-term partial sum of Blasius' expansion (27). The numbers at
the curves refer to the number of terms in partial sums of (16). The coefficients of (16)
have been evaluated by use of the general formulas (19) and (20) for the coefficients and
backward difference quotients for their derivatives.
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FIGURE 2. u(x, y)/ue(x) AT x = 0.1 (¢ = 11.5°) FOR THE CIRCULAR CYLINDER
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B refers to the available six-term partial sum of Blasius' expansion (27).

the curves refer to the number of terms in partial sums of (16),.

The numbers at
The coefficients of (16)

have been evaluated by use of the general formulas (19) and (20) for the coefficients and
backward difference quotients for their derivatives,
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B refers to the available six-term partial sum of Blasius' expansion (27). The numbers at
the curves refer to the number of terms in partial sums of (16). The coefficients of (16)

have been evaluated by use of the general formulas (19) and (20) for the coefficients and
backward difference quotients for their derivatives.
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FIGURE 4. u(x, y)/ue(x) AT x = 0,85 (p = 97.4°) FOR THE CIRCULAR CYLINDER
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B refers to the available six-term partial sum of Blasius' expansion (27). The numbers at
the curves refer to the number of terms in partial sums of (16). The coefficients of (16)
have been evaluated by use of the special formulas (21) for the coefficients and the
unsymmetric finite expressions (37) for their derivatives,
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B refers to the available six-term partial sum of Blasius' expansion 27).
The numbers at the curves refer to the number of terms in partial sums of
(22), The coefficients of (22) have been evaluated by use of the general

formulas (24) - (26) for the coefficients and backward difference quotients
for their derivatives,
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FIGURE 7, u(x, y)/ue(x) AT x = 0,1 (¢ = 11,5°) FOR THE CIRCULAR CYLINDER
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B refers to the available six-term partial sum of Blasius' expan-
sion (27). The numbers of the curves refer to the number of terms
in partial sums of (22), The coefficients of (22) have been
evaluated by use of the general formulas (24) - (26) for the coef-
ficients and backward difference quotients for their derivatives,
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B refers to the available six-term partial sum of Blasius' expansion
(27). The numbers at the curves refer to the number of terms in
partial sums of (22), The coefficients of (22) have been evaluated
by use of the general formulas (24) - (26) for the coefficients and
backward difference quotients for their derivatives,
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The solid line represents (28) following from a six~term
partial sum of Blasius' expansion (27). The dashed line
represents (34), which is a result of employing the outer
solution for the entire boundary layer,
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FIGURE 10. c,(x) Re’2 FOR THE CIRCULAR CYLINDER, FROM BLASIUS'
EXPANSION (28) AND FROM THE APPROXIMATION (34)
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The solid line represents (28) following from a six~-term

partial sum of Blasius' expansion (27). The dashed line

represents (34), which is a result of employing the outer
solution for the entire boundary layer,
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FIGURE 11, cf(x)/cf(0.05) FOR THE CIRCULAR CYLINDER, FROM BLASIUS'
EXPANSION (28) AND FROM THE APPROXIMATION (34)
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The solid line represents (28) following from a six-term partial sum of Blasius' expansion
(27). The dashed line represents partial sums of (22), :
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FIGURE 12, cf(x) Re’” FOR THE CIRCULAR CYLINDER, FROM BLASIUS' EXPANSION AND' FROM (16)
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The solid line represents (28) following from a six-term partial sum of Blasius' expansion
(27). The dashed line represents partial sums of (22) which are continued by use of
partial sums of (16).
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FIGURE 13, cf(x) Re% FOR THE CIRCULAR CYLINDER, FROM BLASIUS' EXPANSION AND FROM (22) WITH CONTINUATION BY USE OF (16)
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Cases 1, 2, and 3 are defined in equation (43) and Table 5,
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Cases 4, 5, and 6 are defined in equation (43) and Table 5.
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Cases 1, 2, and 4 are defined in equation (43) and Table 5,
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The solid line represents zero mass transfer and the dashed line uw(x)
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0 and vw(x) = - 0,2,
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APPENDIX A
VALIDITY OF BLASIUS' EXPANSION
For the flow past a symmetrical cylinder of arbitrary cross section with

a blunt leading edge, the velocity distribution at the outer edge of the boun-
dary layer can be expressed in the form

Blasius has shown in Reference 6 that G(x, y) can be represented by

a= - G’l f'l X + Z 2n U2n_l f'21.’1-1(n) ;(zn—l.
n=0
For the circular cylinder, this expansion takes the form of equation (27). The

functions fh,_, (1) are solutions of ordinary differential equations which for
n =z 3 depend on the numbers Gj. Howarth [22] has replaced each one of the
functions £f5, f% and f$ by universal functions independent of the coefficients
tu; of the particular profile under consideration. Tifford [59] has calculated
the function f%;. According to Reference 28, the momentum integral of the
boundary layer is not satisfied by the available terms in Blasius' expansion
if the flow region of increasing pressure is considered in the boundary layer
at the circular cylinder with u, = 2 sin q. According to Reference 14, the
friction coefficient varies proportionally to (x4 - x)%2 as x — Xg. Figure 12
shows that the available terms in Blasius' expansion (28) for cg(x) Re/ do not
satisfy the consequent condition c}(xg) Re’ =-o, This situation indicates that
a higher order partial sum is required to approximate the infinite series for
u(x, y) in the region of decelerated boundary layer flow past the circular
cylinder. '

In addition to this deficiency in case of the circular cylinder, Blasius'
expansion exhibits serious shortcomings for profiles less blunt than the circle.
For example, a sequence of elliptic cylinders with ratio A of minor and major
axes is considered, with the major axis of length L aligned with free stream.
Conformal representation of these ellipses on the circle yields Ge(X, A)/Tw
according to Section X. Obviously, accurate approximations by use of Blasius'
expansion may be expected only if the polynomial
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608 = Y s 307
n=0
yields less than, say, 5 percent error as compared to the results of the con-

formal representation., 1In dependence on the ratio A of the axes, the follow-
ing table gives the station x at which this 5 percent error is reached.

It is seen that Blasius' expansion solves Prandtl's boundary layer problem
only for profiles of considerable bluntness.
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APPENDIX B
HISTORICAL NOTES ON THE INNER AND THE OUTER SOLUTIONS

The asymptotic transition of the boundary layer to the inviscid irrota-
tional outer flow suggests the subdivision of the boundary layer into an inner
and an outer region. This approach seems to have been used for the first time
by Blasius (Reference 45, 1908) in order to solve the "flat plate'" boundary
layer with ug(x) = const., In similarity variables

n = yNG/IR and £(n) = YN PRI, ,

this problem is governed by the differential equation £f'" + 2f" = 0, e.g.,

Ch. VII of Reference 48. Blasius obtained the solution of this equation in
the form of a power series expansion about 7 = 0 and an asymptotic expansion
for 1 = », the two solutions being joined at a suitable point in the boundary
layer. The usefulness of the matching method is shown, e.g., by the agreement
between Blasius' solution and a Runge-Kutta solution presented in Reference 61.

Blasius' matching method was applied again in 1934 by von Kdrmdn and
Millikan [27]. According to Reference 28, these authors obtained their outer
solution from the linearized differential equation (29). By use of the
expansion

M

R - m/2

@) = 7 a ¥, (3-1)
=0

they presented the outer solution for even values of m in the following form:

M
g - g, exf z = j{: a, F@% + 1) (4@)m/2 (im erfc z); (B-2)

m=0

here z = ﬁ/ZJ;@ , I' denotes the I'-function, erf the error function, and i™ erfc
represents the m-th repeated integral of the complementary error function, e.g.,
Reference 7. According to Reference 28, von K4rmdn and Millikan obtained a
closed-form inner solution from the linearized momentum equation

324/d52 + (ku/d) = k,
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where

k = (1/p) ap/ax

and A denotes the velocity component at the inflection point (defined by
d%G/dy% = 0). 1In the region where ul(x) > 0, the outer solution is used by
these authors for the entire width of the boundary layer. This yields rather
poor results for blunt bodies as is seen in Figure 10 for the case of the
circular cylinder. For slender bodies, though, the outer solution yields
more accurate answers for cf(x) Re’. as is shown by pertinent results in
References 1 and 2. Von Kdrmdn and Millikan employed their inner solution
only between the wall and the point of inflection, i.e., in the region where
ui(x) < 0, It is pointed out in Reference 28 that although this method 'seems
to be more reliable than the Pohlhausen method in predicting separation, it
errs in setting the separation point too far forward and in predicting too
rapid a boundary layer growth.”

In Reference 60 (1945), Tollmien studied the asymptotic tramsition
?ﬁJs?—am by employing solutions of the linearized differential equation (29)
as they are given in treatises on heat conduction, e.g., Ch, II of Reference 7.
The solution consists of two integrals, the first accounting for the initial
distribution g(0, V) at ¥ = 0 .and the second representing the influence of a
free boundary function g(@, 0) at the wall ¢ = 0, This function g(Z, 0) is
equivalent to G(%) in (32). Tollmien has shown that the first integral may be
omitted for both a boundary layer beginning at a stagnation point and the
boundary layer past a flat plate with a sharp leading edge and aligned with
the free stream, The asymptotic transition of the boundary layer toward the
outer potential flow is represented in each one of these two cases by the first
term of an asymptotic expansion in powers of ﬁ/ZJE?of the remaining second inte-
gral, The first terms of both expansions depend on one free constant each, c;
and c,, which are determined by the asymptotic behavior of the initial velocity
profile as { - w. This situation again stresses the importance of the upstream
history according to discussions in the Introduction and in Section V,

For the similarity cases defined by tGg = € X™ and Oy = ¥, = 0, Riegels
and Zaat [46, 1947] have solved a linearized version of Prandtl's momentum
equation which is asymptotically wvalid as ?ﬁJEﬁ — o, The solution depends on
a free parameter A = A(m) which is determined by matching with numerical solu--
tions derived for small and medium values of 7/JTW.

Betz [5, 1955] has derived a differential equation of a form similar to
(29). The convolution-type integral of this equation is used in the range
§%(x) £ § < w, where &% is the displacement thickness of the boundary layer.
This integral, which depends on a boundary function X (V@) comparable to G' (9)
in (32), is expanded in a series by use of universal functions Gp(E) and a

Taylor series for ug X as a function of 7%; here

E= G - 5 ®) G, &/2VFE
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is essentially the variable used in GOrtler's expansion [18, 19]. In Refer-
ence 5, Betz has tabulated universal functions én(g) and evaluated his expan-
sion for the case of similarity solutions with Geg = € &® and Gy = vy = 0.

The applicability of Betz's solution depends critically on the convergence of
the Taylor expansion for ﬁg X. A comparison with Blasius' series discussed
in Appendix A shows that this problem may impose severe limitations upon a
series evaluation of the convolution-type integral of (29).

The calculation procedure proposed by Kosson in Reference 28 (1963) is a
major modification of the method of von K{rmdn and Millikan. The factor u/ue
in equation (10b) is replaced by a constant number C, which then also appears
in the solution. Kosson determines C by use of some approximately valid rela-
tions and points out that in general C 2 0.8. The inner solution is represented
by the polynomial

in exceptional cases, though, Kosson uses the inner solution given by von Kdrmdn
and Millikan in Reference 27. Kosson presents a closed-form generalization of
(B-2) which is due to replacing (B-1) by

M N
P - ) am e ) 5 (3-3)
=0

8

I
o
=]

where m and n are integers and in > 0. Since considerable difficulty may be
encountered in approximating a given p(¥) distribution by (B-3) (see Appendix A),
Kosson in lieu recommends a closed-form expression for (§ - g, erfz) which
follows from replacing the given p(¥) distribution by a step curve. Kosson
applied his method to the following cases in Reference 28: (a) a constant or

a linear variation in Ge(X), (b) the circular cylinder with the velocity distri-
bution G.(x) = 2 sin ¢ as given by potential theory, (c) the circular cylinder
with Gg(X) following from the measured pressure distribution [13], and (d)
Schubauer's ellipse of Reference 21. Kosson remarks in his paper [28] that

his method "occupies a middle ground between the integral method and numerical
methods, with respect to accuracy and computing time, A typical problem, ..
takes from 2 to 5 minutes on an IBM 7090 digital computer.'" The calculation
method presented in this paper is a more refined version of Kosson's applica-
tion of the matching principle. The authors of this paper were not aware of
Reference 28 before its publication and they completed their paper before
Reference 28 came out in May 1963,

.
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APPENDIX C
SOLUTIONS OF THE LINEARIZED VON MISES EQUATION

Both the complementary error integral

by - 2 -p?
F@ -, ¥ - V%) = = e™" dp (c-1)
Vo )
-V
2N@g-n
and the expression
i 5)
g, ¥ - 1= [ [6() - 11 $5F@ - n, v - ¥ dn (c-2)
=0

n

satisfy the differential equation (29) of the outer solution for ¥ > V-
Expression (C-2) fulfills the first and third one of the pertinent initial
and boundary conditions (31), i.e.,

g(0, V) = lim g(@, ¥) = L.
¥ o
It will be shown now that the second one of the conditions (31) is also satis-

fied by (C-2), i.e.,

lim  g(#, ¥) = G@).
¥ -k

The coordinate transformation

\lf - Ty
b= __\VQL (c-3)
2@ - q
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relates 1 and p at fixed values of both @ > 0 and V¥ - ¢§ > 0. TUpon this
transformation, (C-2) can be written as follows:

- =
— -Lp-_ iy
, 7 v W - ¥
g@, ¥ -1 =— f e“[a(,@——a_—r-ljldp
NP3 N b
llf'ﬂf&
g’
(C-4)
N W - V%)
L2 [ [G@ LA 1J au.
J . b
-7,
— -y
Ay’

Since its integrand is bounded, the first integral in (C-4) tends to zero

together with (¥ - y*). Evidently, the integration variable p of the second
integral in (C-4) fulfill

s the inequality
>y - v

since ¥ > W§~ If G - (¥ - W§)2/4H2) is defined to take on the value G(¥)
when both { - w& and pu are zero, the second integral is a continuous function
of ¥ - Y% in the entire range of variation O =

=y - U <o, As ¥ — yg, there-
fore, the second integral in (C-4) tends towards

2 1 -u® dy = 1 5
= |c® - e™ =6 - 1. (c-5)
-y
—= + gy
Wy
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The right-hand side of (C-2) may be integrated by parts because both F
and G possess continuous derivatives with respect to J (e.g., p. 65 of Refer-
ence 69),

g7, V) - 1= ﬁw - ¥ W) —(“l dn (C-6)

o]

Here, the relations G(0) = g(0, w&) = 1 and F(O, ¥ -~ y%*) = 0 have been employed.
Since F possesses a Riemann integradl with respect to @ and OF/dV is a continuous
function of both & - 1 and ¥ - Wg, equation (C-9) may be differentiated with
respect to | (e.g., p. 67 of Reference 69),

- ¥®
o, V) _ _ 2 fdG(n) P [ 4(F - nJ 4
= - L - dn. (C-7)
o1 NI : dn NS ;

If |dG/dn| = M, this integral exists for any value of ¥ in 0 £ ¥ - W& < © gince

< ——Mﬁ dn Mg . (C-8)
N J 205 \/_'

Therefore, as V¥ —awa, the right-hand side of (C-7) tends towards

dg (7, \lr*) 46 () dn
— - Fﬁ Ty (c-9)

Equation (C-9) is multiplied by (w - ﬁ)é and subsequently 1ntegrated
over ¢ in the limits ¢ = 0 and @ = w. Because of G(¥) = g(¥ , W *y and
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F=w =g Sw s
f 1 []‘ de(n) _ dn :Jd’“] M[f dg :’dn=.
Jod i J5- o g Jw- 2@ -

2=0 n=0 | Z=n
=W R
- j L o = [g(w, o - 1] , (c-10)
n=0 '
the relation
- N [g(ﬁ, yx) - 1] = TN (C-11)
(o]

is obtained finally after a suitable change of notations has been carried out.

Regions Hm,n are introduced

Zn-1 < 2 < @, Ym-1 < ¥ < ¥p> (C-12)

referring to a suitably selected grid in the @ -  plane. Approximate solutions
of von Mises' boundary layer equations (10b) may be obtained by employing the
linearized differential equation

agm n azgm n
——ga— = Um n ——ggg— (with Um n = const.) in Hm 0’ (C-13)

1If g(&, V) is known for 0 = @ = @n-1, 0 < ¥ < and for Fy_1 = F = Z,
0 < ¢ < Ym-1, the following initial and boundary conditions can be prescribed

‘on the parabolic boundary of Hp n:

rgm’n(gn_ls \l;) = 7l(¢) for llfm—l = \II < \p.m,
En,nPnore W =0 for ¥ <y, and ¥ > im (C-14)

gm,n(,@, wm_ l) 72(11") ] and

og, @ V)
\ a'\lf = 70 (W) .
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The solution gm’n(ﬂ, ¥) of (C-13) may be represented by the sum

Bp (P> V) = 82(2, V) + g2(F, V) +85(F, ¥) (c-15)

of the three "influence integrals' (e.g., Ch. II of Reference 7)

m
]Y G1(F,__, B) exp [ W - B4U, (@ - ﬂn_g} ap

Ym- 1
g1(d, V) = - ' : (C-16)
z\lﬂUm,n (,@ - ,@n_l) !
g2(g: W) = ﬁGE(n: \Ifm_l) 86'5 F(,@ = T W = Wm—l) dn: (C'17)
'@n-l
and
gB(g, ‘lf) = ‘/? G3 (T]>llfm) gaa F(g = T Wm - \|f) dTl- (C-].S)
'@n-l

These three integrals depend on the unknown functions G1(Zh-1, V), Gao(d, Vm-1),
and Gz(J, {m). Comparison to (C-2) shows that g-(Zh-3, V) = g5(Znh-1, ¥) = O.
According to Ch, II of Reference 7, therefore, Gy(Jn-1, V) = 71 (V). The functions
Go(d, Vm-1) and G=(F, Ym) can be determined by requiring that (C-15) take on

the prescribed boundary functions yo (V) and y-(¥) on the boundary

¥o= ’Q/n-légégHOme

m-1 ,n'

In this way, the solution (C-15) of (C-13) is obtained in Hm n

>
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In the subregion Hy J(xy) < & < F(xg), ¥, < ¥ < ¥ with ¥y < Wé,'the inner
solution is represented by partial sums of (lg) or (22). 1If cs(®) Re’z is
already known for @(x,) = 4 = @Zh.1, the numerical procedure of Section VII is
employed to determine cg (@) Re’s with the following pertinent additions: Within
each iteration cycle for cg(%y,) Re’2, partial sums of (16) or (22) are evaluated
on the boundary line ¥ = vy, Zn-1 = @ = @, of Hy,. From g(Zh_1, V), g7, Vo)
and Og(?, Vg)/oy, there follows the solution go’n(ﬁ, V) of (C-13) for Hy p.
Subsequently, g1 n(#, ¥), g2(f, V), etc. are determined, If Yy = yF, both
g(d, W) and og(Z, Yy)/OV, as following from 8M n(Q, V), are substituted in
the boundary relation (36) of the outer solutiof. The constant number Up.n is
chosen in such a way that Uy pn represents an average of the initial and boun-
dary distributions u(@p.1, wj and u(?, Ymp-1)-
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APPENDIX D
BOUNDS OF THE RIGOROUS SOLUTION

With reference to discussions of approximate solution methods in the Intro-
duction, it is desirable to determine rigorously valid bounds of exact boundary
layer solutions. These bounds can be constructed by use of Nickel's modified
version [37-39] of the lemma of Nagumo [36] and Westphal [68] for nonlinear
parabolic differential operators. According to Reference 39, the region Hp
and its parabolic boundary I'p are introduced,

HP: 0 <x<xy < X, 0 <y < oo
(»-1)
FP: x = 0, 0 <y < oo y =0, 0=x<zx5;
y = o, 0 = x < xXq.

The "admissible" functions as defined in Reference 39 are subjected to condi-
tions on continuity, differentiability, and signs. TFrom the point of view of
engineering applications, the most important ones of these conditions are

u(x, y) > 0 and du(x, y)/dy > 0 in Hp and du(x, 0)/dy > 0 in 0 < x = x3;. In
sections X = const., the admissible function u(x, y) then increases monotonically
wity y, as is true for exact solutions u(x, y) according to theorem (Ia) in
Section ITI. The subscripts L and U denote lower and upper bounds, respectively.
At the wall y = 0, it is assumed that uyp(x) = uyy(x) = uy(x) = 0. The follow-
ing theorem then holds true according to Reference 39:

(I1I). Both the exact solution u(x, y) of Prandtl's boundary layer
problem and the admissible functions up(x, y) and up(x, y) are assumed to
satisfy the initial and boundary conditions (lla) - (l4a) on I'p with
Uy = Upy = Ugy = 0. If

< = = i -
PP uL(x, y) = PP u(x, y) 0 = PP uU(x, y) in HP’ (D-2)
where the operator PP is defined in (5),
uL(x, y) £ ulx, y) = uU(x, y) in HP + FP. (D-3)
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Von Mises' transformation (6) and (7) relates Hp and I'p to Hy and Iy,

He 0 < g<gxy), Yy <V <
(0-4)

Iy g=0, ww < V¥ < », etc,

Since the Jakobian (8) is nonzero in Hp, the inverse, xy and yy, of von Mises'
transformation can be determined in Hp,

g ¥
(D = f ue(zit:) and  y (&, ¥, v) = f E(g(f_tt) . (D-5)
0 WW

According to Reference 39, u(f, V) and u; (¥, |) are defined with reference to
the corresponding stream line distributions,

Mﬂﬂﬂzuéﬁm,)%@f%uo
and (D-6)

uw (g, V) =u @, vy WG, ¥, u)
L A M L

In terms of von Mises' boundary layer operator

T
_ Ju Ye e D du
PM u(g, V) = 3 " Y u v/ (D-7)
Prandtl's momentum equation (5) can be written as follows:

PuCx, ) = u(@, ) Ruld, v in H. (0-8)

Application of (9) transforms u Py u = O into von Mises' differential equa-
tion (10). Because of (D-2), (D-4) and (D-8),
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By u (B ¥) S B ul@ W) = 0 =B u(d ¥) in . (D-9)
From this relation there follows according to Reference 39

uL(Q', V) s u(d, ¥) = U in HM + I‘M. (D-10)
Because of (D-5) and (D-10)

N dt dt _
YM(Q,’ W: u) - _/yu(g’ t) = ﬁuL(g’ t) - yM(Q’ \U, uL)- (D'l]-)
Yy : ¥,

Theorem (Ia) in Section II, (D-6), and (D-11) yield

uL<xM<;z>, AR uL>> w (@, ¥ = ul@, ¥ =

(D-12)
= “("M('@)’ Y@ Vs u)> = u<xM(Qf), Yy (&> ¥ uL)> in B, + L.
Since HM and Iﬁ correspond Hp Pp’
uL(x, y) = u(x, y) in Hy, + I (D-13)

with the equivalent relation holding true between upy and u. It is thus seen
that (D-3) in theorem (III) is valid regardless of whether the differential
relations (D-2) in Cartesian coordinates or (D-9) in von Mises' coordinates
have been used to determine uy, and uy. This conclusion obviously is still
valid if (D-9) is employed in part of the boundary layer flow plane under
consideration and (D-2) in the remaining part.

The bounds will be constructed separately in Hy and Hyy, employing
Cartesian coordinates in Hy and von Mises coordinates in Hyy. For simplicity,
the brief outline to be given here will be restricted to one stream line
¥ = wg separating Hy and Hyy,. A sufficiently large value of Wg is assumed
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s0 that both 3%g;/dy® and Bng/5¢2 are negative in 0 < f = @(x;), V3 = ¥ < o
i.e., any points of inflection of uy and uj, in sections x = const. are
restricted to Hy. The lower bounds are assumed to satisfy the following con-
ditions on the boundaries of Hj and Hyy, respectively:

g (0, y) =1, g (x, 0) =1-uix), gLG, ¥ (x, y)> =G <525(X)>, (D-14)

and

g (0, V) =1, lim g (4 ¥) =1, and g (4 ¥ = 6 (D). (D-15)

¥ o

These conditions also apply to the upper bounds after the subscript L has been
replaced by U. With reference to (39), uj, and uy are assumed to satisfy the
linear differential equations

BgL BZgL

i = 57 (D-16a)
and

og O%g

agU = Us asz (D-16b)

in Hyyo. Because of 0%gy/oy® < 0, d%gy/oy® < 0, equations (39) and (D-16),
and theorem (Ia) in Section II,

2
Y, 9%8L 3w 2% _ . . OB Uy oTey
W ST oW T W 7 o ©-17)

To facilitate the discussions with regard to Hy, only the construction of the
lower bound will be outlined here. This bound uj is expressed by a partial
sum of

n
A ;}:T in H (D-18)

Y T nL I’

(o]

n=1
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which is to satisfy the following differential equation
Pp v (x, ¥) = F (x, ¥) + B (). (0-19)

The "discrepancy term" Fi,(x, y) appears in (D-19) because any partial sum of
(D-18) in general does not fulfill the differential equation Ppu(x, y) = 0.
The free function By, of x is determined in such a way that

PPuL(x, y) - FL(X, y) = PPu(x, y) = 0 in HI + Wg- (D-20)

Because of (D-14), (D-15), (D-17), and (D-20), the conditions of theorem (III)
are satisfied, i.e.,

uL(x, y) = u(x, y) in HI + Wi + Hypge (D-21)

Here, the equivalence of determining the bounds in Cartesian coordinates and
in von Mises coordinates has been employed. The admissible functions employed
in theorem (III) are supposed to be continuous and to possess continuous first
derivatives with respect toy in 0 £ X £ x;, 0 <y < =; regarding the second
derivative of admissible functions with respect to y, only the existence in
this region is assumed in Reference 39. While these conditions on uj, and
Our/dy are fulfilled in Hy and Hypg, the functional values of uy and ZBuL/By =
dgr/dV as following from the individual representations in Hy and Hyp have to
be matched along the curve | = Wg separating Hy and Hyp. For this purpose,
the matching procedure of the inner and the outer solution as presented in
Sections VI and VII may be employed. 1In addition to the stepwise numerical
solution of the integro-differential equation (36) for ch(x), the functional
values of By (x) have to be determined at every grid point Zn in such a way
that (D-17) is satisfied in Oh-1 < @ = @, 0 <y = y*(x). The double itera-
tion procedure thus required at every step for cgp(Zn) and BL(Qh) is facili-
tated by the fact that any number BL(Qh) will do which satisfies the inequality
sign in (D-18).

The relationship (D-21), its equivalent u = uy, and gp(x, 0) = gy(x, 0) =
g(x, 0) = 1 - u2(x) according to (D-14) show that A;r(x) = A1(x) = Aiy(x); i.e.,

ch(x) = cf(x) = ch(x) for 0 < x < x, (D-22)
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because of (18). These bounds for the exact friction coefficient cg(x) enable
one to determine bounds of the separation point,

A
1A

x X =X (D-23)

sL s sU

from cfy(xg1,) = cfylxgy) = O, respectively. Details of this calculation pro-
cedure for the bounds and numerical applications will be presented in a forth-
coming paper by the first author.

The outer solution of Section V satisfies the differential equation
(D-16a) for the lower bound in Hyjy. The condition (D-2) in theorem (III) is
satisfied by solutions of (D-16a) provided BZgL/sz < 0. TIf, in addition,

g, (B, Vo) = 88, ¥5) = gy (F, V) (D-24)
and
1llIizoo g (&, V) = l[1Ii_nioo gy, V) =g, (0, ¥) =g, (0, ¥) =1, (D-25)

the outer solution represents a lower bound in Hyy,. The conditions (D-24)
can be satisfied, e.g., if the outer solution is applied for the entire
boundary layer, i.e., wz = Ve This yields equation (34) whose evaluation
for the boundary layer past the circular cylinder is compared in Figure 10 .
to a supposedly rigorous solution. It is seen in this figure that cg,y(x) Re’2
from (34) actually represents a lower bound of cg(x) Re% if ué(x) > 0. Past
the point of minimum pressure, xy = 0.787, however, equation (34), ceases to
represent a rigorously valid lower bound of cg(x) Re’s since g(d, ) possesses
a point of inflection in sections ¢ = const. for @ > Z(xy).

Upon the transformation
WU < \Ifz; =~NUp (\VL = W*)s (D-26)

(o]

the diffevential equations (D-16a) and (D-16b) and their solutions become
identical because of (D-24) and (D-25),

gL(Q’ WL) = gU(Q/’ “U2 IIIL)- (D-27)
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Because of theorem (I1I),

e, (7, V5 W@, ¥H 2w, W), 3 (4 VD)
< < < = Uz"”

0 a\lfL Sv = BWU o T . (D-28)

According to Section VI, the constant number Uz may be chosen arbitrarily
within the bounds zero and one, see (39). Because of this reason, (D-27)

represents an a priori estimate of the linearization error incurred by the
outer solution.
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